小波变换和motion信号处理:第二篇
ion,如下图所示:
上图就是四个子空间的basis集合的展览。通过前面的讨论,我们还知道,一开始的scaling function可以通过更精细的子空间的scaling function(它们都是对应子空间的basis)来构建。比如
对于更加finer的scale:
图2
依此类推。实际上,对于任何scale和translate过的scaling function,都可以用更加精细的scale层面上的scaling function构建出来。
然后,我们有各种scale下的scaling function了,该看看它们分别所对应的嵌套的空间序列
了。先看看V0,自然就是以基本的scaling function为基础去SPAN出来的:
这个不新鲜,刚才就讲过了。这个子空间代表什么样的信号?常量信号。道理很简单,这个scaling function在整个信号长度上,没有任何变化。继续往下看:
这个相比V0更加finer的子空间,代表着这样一种信号,它从1-4是常量,从5-8是另一个常量。同理我们有:
V2代表的信号,是分别在1,2; 3,4; 5,6; 7,8上有相同值的信号。那么V3呢?则表示任何信号,因为对于V3来讲,任何一个时间刻度上的值都可以不一样。而且现在,我们也可以通过上面的一些scaling functions的波形验证了之前提到的多解析度分析中的一个核心性质,那就是:
我们之前讲了一堆多解析度的理论,但直到现在,通过这些图形化的分析,我们可能才会真正理解它。那好,既然我们有一个现成的信号,那就来看看,对这个信号作多解析度分析是啥样子的:
你看,在不同的子空间,对于同一个信号就有不同的诠释。诠释最好的当然是V3,完全不损失细节。这就是多解析度的意义。我们可以有嵌套的,由scaling function演变的basis function集合,每一个集合都提供对原始信号的某种近似,解析度越高,近似越精确。
说到这里,可能你对scaling function以及多解析度分析已经比较理解了。但是,我们还没有涉及到它们在小波变换中的具体应用,也就是还没有回答刚才那个问题:凭空插了一个scaling function到小波basis组合中干嘛。也就是说,我们希望理解scaling function是怎么和小波函数结合的呢,多解析度能给小波变换带来什么样的好处呢。这其实就是是小波变换中的核心知识。理解了这个,后面的小波变换就是纯数学计算了。
好,我们已经知道,对于子空间V0,basis是scaling function:
对应的小波函数是:
然后子空间V1的basis集合是这俩哥们:
看出什么规律了么?多看几次这三个图,你会惊讶地发现,在V0中的scaling function和wavelet function的组合,其实就是V1中的basis!继续这样推导,V1本来的的basis是:
然后V1中对应的wavelet function是
他们的组合,本质上也就是V2的basis(参考图2)。你继续推导下去,会得到同样的结论:在scale j的wavelet function,可以被用来将Vj的basis扩展到V(j+1)中去!这是一个非常非常关键的性质,因为这代表着,对任何一个子空间Vj,我们现在有两种方法去得到它的orthonormal basis:
1. 一种就是它本来的basis
,对任意k。
2. 第二种就是它上一个子空间的basis
,对任意k,以及上一级子空间的wavelet function
,对任意k。
第二种选择能给我们带来额外的好处,那就是我们可以循环不断地用上一级子空间的scaling function以及wavelet function的组合来作为当前子空间的基。换句话说,如果针对V3这个子空间,它实际上就有四种不同的,但是等价的orthonormal basis:
1. 本级(V3)的scaling function basis set
2. 上一级(V2)的scaling function + wavelet function;
3 . 上上一级(V1)的scaling function + 上上一级(V1)的wavelet function + 上一级(V2)的wavelet function;
4. 上上上一级(V0)的scaling function + 上上上一级(V0)的wavelet function + 上上一级(V1)的wavelet function + 上一级(V2)的wavelet function
好,看看最后一种选取方式,有没有感到眼熟?对了,它就是我们之前提到的“针对此信号space的哈尔小波basis组合”,参见图1。现在我们知道了,这个scaling function不是凭空插进去的,而是通过不断的嵌套迭代出来的:)
那为什么我们最后选定的是这种选取方式呢?实际上,刚才介绍的这个性质已经告诉我们,对于任何的scale j0,我们都可以给我们的signal space找到一组orthonormal basis,这个basis是通过组合scale j0上的scaling function以及所有在scale j,j>j0上的wavelets得到的。这样,基于这个orthonormal basis,所有信号空间中的信号都可以写成组成这个basis的
- 一种长序列小波变换快速算法的DSP实现(08-11)
- 快速小波变换的定点DSP实现(03-02)
- 基于小波变换的ECG信号压缩及其FPGA实现(06-05)
- DWT域数字水印算法的FPGA实现(06-05)
- 基于小波变换和角度域分析的发动机气门机构异响排查(12-19)
- 小波变换和motion信号处理:第一篇(05-22)