微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 一款基于单片机的基2同步数据采集系统设计

一款基于单片机的基2同步数据采集系统设计

时间:05-26 来源:互联网 点击:

同理,可实现单片机(2)在偶周期Tx2期间,输出N倍频的方波信号。可见当输入单片机的外部信号?x每产生一个周期脉冲,在其输出端就会有N个输出脉冲,用输出脉冲去触发A/D板卡采集,即实现了N倍频的整周期采样。 1.3 准周期信号的周期预测 上述方法实现整周期采样时,是把这一周的周期值作为下一周的周期来计算采样脉冲输出频率的。对周期性信号,周期固定不会影响结果;但对准周期信号,周期是渐变的,会带来较大的误差。为了减少或补偿这种误差,本设计借助单片机的运算和数据处理功能,分别对下一周期进行周期预测。即利用前m个周期的T值,对下一个周期作出预测,再以预测的M来设置定时器T1的初值。用拉格朗日线性插值法可预测周期[3],如图3所示。提取最近两周的周期值,推算下一周的周期值。 图3中Tj为第j周终了时刻测得的周期值,Tj-1为第j-1周终了时刻测得的周期值,Tj+1为要预估的下一周终了时刻的周期值,则可得预估公式: Tj+1=2Tj-Tj-1=Tj%26;#177;ΔTj (5) 由此可得: Mj+1=2Mj-Mj-1=Mj%26;#177;ΔMj (6) 2 基于PC总线控制的数据采集系统 基于PC总线的同步采样系统框图见图4,它主要由地址译码器、单片机倍频电路、A/D转换器组成。各模块功能如下: 地址译码:PC机中用户可使用0300H~031FH地址,采用与非门74LS133对PC总线的地址信号A0~A9译码,端口地址为030FH和 030FH。 单片机倍频电路:产生同步信号进行同步采样,保证信号截断长度正好是信号周期的整数倍。 A/D转换器:采用AD678芯片实现模数转换。AD678是带采样保持器的12位A/D转换器,其精度为2-12=1/4096=0.024%,转换时间为5μs,其工作速率满足采样频率的要求。 3 性能及误差分析 (1)输入信号上下限频率fxH和fxL的确定 当输入信号频率较高时,(3)式中的n取4位二进制,考虑到单片机的中断响应时间需要3~8个T0,因此由(2)式可求得: Txmin=8х24T0+TP=128μs+TP (7) 式(7)中的TP为单片机周期预测所需的时间,设约为72μs。

当输入信号频率较低时,(3)式中的n取8位二进制,(4)式中的M可取16位二进制的最大值,因此由(2)式可求得: Txmax=28х216T0≈16s (8) 则由(7)、(8)两式可确定: fxH≤5kHz和fxH≥0.1Hz (2)误差分析 根据(5)式估算的周期值,如果准周期信号的周期变化是均匀的,即遵从匀变速规律,由此引入的误差为0;如果周期变化是非均匀的,则仍会带来一定误差。在许多实际应用场合(如旋转机械的起停过程)周期主要是匀变速或接近匀变速,而少许的偏离经(5)式的修正后影响很小。其它的计数误差和单片机中断引起的误差,可看作系统误差,由单片机修正。 本文介绍的准周期信号同步数据采集系统,借助单片机的周期预测功能,对准周期信号智能倍频,从而实现整周期基2同步采样,进而大大消除频谱分析中的泄漏误差和栅栏效应,在机械故障诊断、信号测试等相关领域具有很强的实用性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top