微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 一种无APFC的低成本全电压设计思路

一种无APFC的低成本全电压设计思路

时间:06-05 来源:互联网 点击:

220V-240V.由公式可知整流输出后电压范围为:

DC283-DC360V.充分考虑器件分压:如电容ESR、开关管压降、EMI器件压降,可以认为在重载情况下整流导通约为60度,电压取值可以认为在:DC245V-DC360V.相对于普通全压电源电压取值范围(将达到:DC122-DC360V)有大幅度衰减。

3.3 辅助电源

辅助电源采用反激RCD拓扑。辅助电源为所有控制电路提供电力,由于整体要求功耗低于15W,选用反激拓扑结构的集成方案实现。

无论在体积和成本控制均为理想的选择。集成方案中常引入了‘打嗝’模式很容易将功耗控制在0.3W以内。

3.4 控制电路

过零逻辑电路、倍压逻辑电路、可控硅驱动电路等组成控制电路。由于使用单向可控硅和双向可控硅相结合可以切断整流后级电路(包含滤波电容),理论上后级电路零功耗。

结合辅助火牛,整机待机功耗可轻易控制在0.5W以内,满足‘能源之星’的要求。

3.4.1 过零电路

由于没有NTC的阻流作用,控制电路还须实现ZVS控制。倍压控制逻辑和ZVS控制逻辑必须保持同步。驱动电路则使用光耦进行隔离驱动,有效避免可控硅驱动电位不一致的问题。

图2-4中比较器U1-B可实时监测过零状态,同时为避免多次过零判断,加入R101完成过零逻辑自锁。图2-5和2-6为实测电压和电流波形。

其中图2-5为使用NTC限流电路,在电源开启瞬间电压和电流波形。图2-6为零压开关电路,电流得到很好的控制,电流有一个从‘0‘

开始变大的过程。浪涌电流也低于NTC限流电路,浪涌电流得到明显的控制,且不受开机间隔的限制,可以任意开关次数和频率的限制,效果非常明显。

自动倍压逻辑先于过零逻辑产生。图2-4中,比较器U1-A实时监测输入电压,其输出逻辑与过零逻辑为’与‘的关系。倍压逻辑电路一方面要能够根据输入电压自动实现倍压操作,同时要能够有效的防止干扰性波形,引起系统不必要的动作甚至误操纵的可能。如:当负大幅度波动时所带来的输入电压的波动,而这种波动是在一定范围内活动的,所以只需对门限进行设定,便可以允许一定范围内的电压波动。而在开机过程中需要避免的是电路需要避开电压上升过程带来的倍压误操作和关机过程中,电压的正常下跌时倍压的误操作。快速开关操作过程中,可能存在的倍压误操作。

3.4.3 可控硅驱动

双向可控硅的驱动方面对工作象限较为敏感。令驱动电压方向为横轴,电流方向为纵轴。对于双向可控硅而言,最佳工作象限为一象限其次是二三象限,第四象限通常不推荐。

工作在第四象限的区间内,可控硅的损耗达到最大,而且对于di/dt的承受应力也急剧下降。

因此,采用下图的二三象限工作区间,既可保证可控硅的良好性能,又能简化驱动电路。

4.结论

本文所提出的解决全电压的大功率电源,此电源拥有自动倍压、无NTC以及超低待机功耗的特点于一身。为追求环保的大功率开关电源提出了一种新的设计思路,给出了一种新的解决方案,具备较强的实用性和商用性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top