多线程编程之:Linux线程编程
inished
Thread 0 joined
Thread 1 is starting
Thread 1: job 0 delay = 3
Thread 1: job 1 delay = 5
Thread 1: job 2 delay = 10
Thread 1 finished
Thread 1 joined
Thread 2 is starting
Thread 2: job 0 delay = 6
Thread 2: job 1 delay = 10
Thread 2: job 2 delay = 8
Thread 2 finished
Thread 2 joined
2.信号量线程控制
(1)信号量说明。
在第8章中已经讲到,信号量也就是操作系统中所用到的PV原子操作,它广泛用于进程或线程间的同步与互斥。信号量本质上是一个非负的整数计数器,它被用来控制对公共资源的访问。这里先来简单复习一下PV原子操作的工作原理。
PV原子操作是对整数计数器信号量sem的操作。一次P操作使sem减一,而一次V操作使sem加一。进程(或线程)根据信号量的值来判断是否对公共资源具有访问权限。当信号量sem的值大于等于零时,该进程(或线程)具有公共资源的访问权限;相反,当信号量sem的值小于零时,该进程(或线程)就将阻塞直到信号量sem的值大于等于0为止。
PV原子操作主要用于进程或线程间的同步和互斥这两种典型情况。若用于互斥,几个进程(或线程)往往只设置一个信号量sem,它们的操作流程如图9.2所示。
当信号量用于同步操作时,往往会设置多个信号量,并安排不同的初始值来实现它们之间的顺序执行,它们的操作流程如图9.3所示。
图9.2 信号量互斥操作 图9.3 信号量同步操作
(2)函数说明。
Linux实现了POSIX的无名信号量,主要用于线程间的互斥与同步。这里主要介绍几个常见函数。
n sem_init()用于创建一个信号量,并初始化它的值。
n sem_wait()和sem_trywait()都相当于P操作,在信号量大于零时它们都能将信号量的值减一,两者的区别在于若信号量小于零时,sem_wait()将会阻塞进程,而sem_trywait()则会立即返回。
n sem_post()相当于V操作,它将信号量的值加一同时发出信号来唤醒等待的进程。
n sem_getvalue()用于得到信号量的值。
n sem_destroy()用于删除信号量。
(3)函数格式。
表9.7列出了sem_init()函数的语法要点。
表9.8列出了sem_wait()等函数的语法要点。
(4)使用实例。
在前面已经通过互斥锁同步机制实现了多线程的顺序执行。下面的例子是用信号量同步机制实现3个线程之间的有序执行,只是执行顺序是跟创建线程的顺序相反。
/*thread_sem.c*/
#include
#include
#include
#include
#define THREAD_NUMBER 3 /* 线程数 */
#define REPEAT_NUMBER 3 /* 每个线程中的小任务数 */
#define DELAY_TIME_LEVELS 10.0 /*小任务之间的最大时间间隔*/
sem_t sem[THREAD_NUMBER];
void *thrd_func(void *arg)
{
int thrd_num = (int)arg;
int delay_time = 0;
int count = 0;
/* 进行P操作 */
sem_wait(&sem[thrd_num]);
printf("Thread %d is starting\n", thrd_num);
for (count = 0; count < REPEAT_NUMBER; count++)
{
delay_time = (int)(rand() * DELAY_TIME_LEVELS/(RAND_MAX)) + 1;
sleep(delay_time);
printf("\tThread %d: job %d delay = %d\n",
thrd_num, count, delay_time);
}
printf("Thread %d finished\n", thrd_num);
pthread_exit(NULL);
}
int main(void)
{
pthread_t thread[THREAD_NUMBER];
int no = 0, res;
void * thrd_ret;
srand(time(NULL));
for (no = 0; no < THREAD_NUMBER; no++)
{
sem_init(&sem[no], 0, 0);
res = pthread_create(&thread[no], NULL, thrd_func, (void*)no);
if (res != 0)
{
printf("Create thread %d failed\n", no);
exit(res);
}
}
printf("Create treads success\n Waiting for threads to finish...\n");
/* 对最后创建的线程的信号量进行V操作 */
sem_post(&sem[THREAD_NUMBER - 1]);
for (no = THREAD_NUMBER - 1; no >= 0; no--)
{
res = pthread_join(thread[no], &thrd_ret);
if (!res)
{
printf("Thread %d joined\n", no);
}
else
{
printf("Thread %d join failed\n", no);
}
/* 进行V操作 */
sem_post(&sem[(no + THREAD_NUMBER - 1) % THREAD_NUMBER]);
}
for (no = 0; no < THREAD_NUMBER; no++)
{
/* 删除信号量 */
sem_destroy(&sem[no]);
}
return 0;
}
该程序运行结果如下所示:
$ ./thread_sem
Create treads success
Waiting for threads to finish...
Thread 2 is starting
Thread 2: job 0 delay = 9
Thread 2: job 1 delay = 5
- REDIce-Linux--灵活的实时Linux内核(11-12)
- linux文件系统基础(02-09)
- Linux标准趋向统一(11-12)
- linux基础技术(02-09)
- LINUX的目录树(02-09)
- 在Windows下启动Linux(02-09)