微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > UPS蓄电池在线监测系统的设计

UPS蓄电池在线监测系统的设计

时间:09-12 来源:互联网 点击:

可靠的监测其健康状态的任务。

e.jpg

UPS电池的CAN通信接口电路如图5所示。STM32F103ZET6内部集成了CAN控制器,只需接入CAN驱动器L9616,由于各个电池节点的供电电压不会完全相同,为了保证CAN总线的正常工作,对总线的各个节点进行电气隔离,本文选用ADI公司推出的双通道数字磁耦隔离器ADUM1201,其芯片内部提供正向和反向通信通道,不仅外围电路设计方便,而且具有较高的数据传输速率,时序精度和瞬态共模抑制能力,能够提高系统的稳定性。

3 数据处理软件设计

由图1可知,上位机需要对采集到的电压、电流数据进行存储并显示,同时对蓄电池的模型参数进行识别,求出蓄电池的核电状态SOC,以便使用户更好的掌握蓄电池的健康状态。

3.1 模型参数识别

本文选取二阶RC模型为电池模型,如图6所示,其中Uoc为开路电压,Ro为电池内阻,R1和R2为极化电阻,C1和C2为极化电容,I为流经内阻的电流,U是电池端电压。

f.jpg

该模型在频域下的状态方程为:

g.jpg

将电流I视为系统输入,电压U视为系统输出,故需要辨识的参数有Uoc、Ro、R1、R2、C1和C2。通过z变换,可将式(2)整理成差分方程的形式:

h.jpg

i.jpg

式中T为采样时间。

可见,采用最小二乘法可以辨识出模型的全部参数。

3.2 荷电状态(SOC)估计

蓄电池的开路电压与SOC之间的关系如图7所示,可知,荷电状态在10%~90%范围内与开路电压之间存在一定的线性关系,文献指出蓄电池的开路电压与SOC之间存在如下关系:

j.jpg

式中Voc为开路电压,Va为蓄电池充满电时的开路电压,Vb为蓄电池充分放电时的开路电压。

k.jpg

因此通过测量开路电压就可直接得到SOC,由于蓄电池的开路电压可以通过最小二乘法估计出来,通过式(8)可得到蓄电池的荷电状态。

4 实验结果与分析

为了说明本系统的可行性,搭建了一套基于ARM的蓄电池在线监测系统,并对12 V、45 Ah蓄电池充电过程进行试验。硬件检测电路如图8所示,上位机检测界面如图9所示。系统运行过程中,界面显示每一个电池的健康状态、工作状态及SOC,点击某一电池即可显示其详细状态,此时蓄电池的监测状态与实际状态如表1所示。

l.jpg

m.jpg

由表1可知,本文设计出的系统可以准确的估计出蓄电池健康状态。

5 结论

文中设计了一种基于ARM的蓄电池在线监测系统,该系统可在线隔离监测蓄电池的电压和电流,同时将这些量通过CAN总线传输到上位机电脑显示并存储,利用最小二乘法识别出蓄电池模型的参数,并估计出蓄电池的荷电状态。该系统能够直观的显示蓄电池当前的各个状态,并形象的显示状态的变化趋势,以便使用户准确判断电池的健康状态,从而延长电池的寿命,提高UPS系统的稳定性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top