基于CAN总线的电动车电源设计
随着汽车电子技术的不断发展,CAN总线的运用也更加广泛和便捷,特别是应用在电动车上。今天成都盘沣科技有限公司的小编将为大家介绍基于CAN总线的电动车电源设计。
本文介绍的电动车用三相逆变电源属于车载辅助逆变电源。称为“辅助电源”是因为它的负载为电动车上的一些辅助交流电机,如汽车转向助力油泵、刹车气泵、冷却水循环中的水泵以及空调系统中的压缩机等。对该三相逆变电源的工作要求是:正常运行情况时独立维持辅助电机的稳定运行,能够根据上位机的指令适当调整工作状态;在负载发生故障(如电机短路)时迅速关系输出、安全关机,同时能够通过CAN总线向上位机和其它节点报告自身故障,引发车辆各系统的相关操作(例如:位于仪表台上的人机界面显示系统将立即显示警告信息,报告车辆故障部位,并提示驾驶员减速;而整车能量管理系统则发出命令关闭辅助逆变电源的输入,并将接收到的错误代码和当前运行参数进行保存,便于维修人员进行故障诊断。
由此看出,虽然选择一个通用变频器进行改装可以实现车用三相逆变电源的基本功能,但是要做成支持CAN总线各种功能的智能化节点必须从底层进行开发,直接选择支持CAN总线接口的控制芯片,在控制程序中集成CAN通讯功能,适应整车通讯的要求。
德国Bosch公司为了解决现代车辆中众多的控制和数据交换问题,开发出一种CAN(Controller Area Network)现场总线通讯结构,广泛应用在常规燃油汽车上,如BENZ、BMW、PORSCHE.同时,CAN总线也被认为是电动车最佳通讯结构,我国“863计划”关于电动汽车的说明中已经明确提出,新申报的电动车开发项目必须采用CAN总线通讯模式。
CAN总线结构是一种有效支持分布式控制或实时控制的串行通讯网络。图1为一个典型的电动汽车CAN总线结构示意图,包括整车动力部分的主电机控制器、电池组管理系统、人机界面显示系统等多个设备,这些子系统之间通过CAN进行数据通讯和命令传输。每个节点设备都能够在脱离CAN总线的情况下独立完成自身系统的运行,从而满足车辆运行安全性的需要。同时,CAN总线也不会因为某个设备的脱离而出现系统结构崩溃的现象。
电动车由于储能设备容量有限,在运行过程中对电能流向管理十分严格。精确的电能管理可以延长车辆运行里程,减少电池充电频率,从而节约运行成本。车载能量管理系统需要随时监控电池电压、电机输出功率以及其它设备的用电情况。同时,电动车电子控制系统的动态信息必须具有实时性,各子系统需要将车辆的公共数据实时共享,如电机转速、车轮转换、油门踏板位置等。但不同控制单元的控制周期不同,数据转换速度、各控制命令优先级也不同,因此需要一种具有优先权竞争模式的数据交换网络,并且本身具有极高的通信速率。此外,作为一种载人交通工具,电动汽车必须具有极高的运行稳定性,整车通讯系统必须具有很强的容错能力和快速处理能力。
1逆变电源系统硬件构成
电动车用辅助三相逆变电源从结构上可以分为三个部分:(1)DC/DC多路电源——自动适应直流输入端的大范围电压浮动,为系统的其它电路提供彼此隔离且电压稳定的低压电源;(2)主控制板——检测各路输出的电压、电流,根据运行情况智能调整逆变电路的输出,通过CAN总线参与整车数据通讯;(3)主功率逆变电路——由高度集成的三相逆变模块IPM组成,完成主电路的逆变功能。
DC/DC多路电源采用开关电源的标准设计,配合具有不同变的多抽头高频变压器,对外输出5V、12V、20V等多路隔离直流电。同时考虑到电动车电池组电压的波动范围相对较大(充满时为400V,使用过程中可能降低到280V),在设计中选择了适当的电路结构,取得较好的输入电压适应能力。
控制板是整个系统的核心,采用P8xC592单片机系统中无片内ROM的P80C592、脉宽调制专用芯片SA8282、CAN总线收发器82C250以及主电路电压、电流数据采集模块等。
控制板通过SA8282专用芯片向三相逆变模块IPM提供6路PWM信号。SA8282芯片由MITEL公司开发生产,其特点是控制简单、频率精度高、运行可靠性高,它支持标准8位MOTEL复用数据总线,可以方便地和单片机交换数据。单片机只需对芯片内部的5个数据寄存器赋值,就可以完成对 PWM波形输出的初始化和实时控制。SA8282芯片为标准28脚双列直插式封装,管脚RPHT、RPHB、YPHT、YPHB、BPHT、BPHB输出三相可独立控制的TTL驱动信号,可对应驱动三相逆变桥上的六路IGBT.
将SA8282专用芯片与IPM连接后,P80C592只需要在启动时对其进行初始化,三相输出达到预定值后,
- 对TTCAN的分析(05-26)
- 嵌入式Win CE中CAN总线控制器的驱动设计与实现(05-01)
- μC/OS-II的多任务信息流与CAN总线驱动(07-11)
- 采用CAN总线实现DSP芯片程序的受控加载(11-08)
- 基于DSP的电动汽车CAN总线通讯技术设计(10-08)
- 基于DSP的CANopen通讯协议的实现(01-18)