微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 现场总线技术标准化进程分析思考

现场总线技术标准化进程分析思考

时间:09-12 来源:互联网 点击:

eNet和EtherNet这三种完全不同的网络技术平台之上的“与网络硬件技术无关”的公共的“网络传输层、应用层、用户层”协议规范,也就是说它可以实现“异构网络”下的系统的“互连”、“互通”,直至“互换”功能。按照OSI七层通讯模型,CIP协议架构下的协议栈结构如下图所示。

与其它现场总线技术通讯协议一个很大的不同就是有一个具有“网络传输层”功能的“CIP Messaging”协议规范。其中最核心的部分就是将应用对象之间通讯关系抽象为“连接(Connection)”,并与之相应制定了应用对象的逻辑地址规范,从而使CIP协议可以不依赖于某一具体的网络硬件技术,而是用逻辑对象地址来定义“连接(Connection)”关系。

并将某一种具体的网络技术平台抽象为与网络接口相关的“物理链路对象(Link Object)”,这样使得CIP协议在不同的网络技术平台上具体实现时唯一需要的接口就是与该网络平台相对应的“物理链路对象(Link Object)”,如“DeviceNet Link Object”、“ControlNet Link Object”和“Ethernet Link Object”等等,而其上层的协议都可不受影响并保持一致,这也就为在跨平台的“异构网络”条件下实现系统的“互连”、“互通”,直至“互换”功能奠定了基础。

更进一步,与其它众多“自底向上”构筑“垂直一体化”通讯协议的现场总线技术不同,它不是根据物理层和数据链路层所能提供的通讯服务原语来定义“连接(Connection)”关系,而是“自顶向上”,根据来自“用户层和应用层”的用户和具体应用领域的实际数据通讯需求, 将“连接(Connection)”关系又细分定义为以下三种类型:

I/O Connection:主要是针对传送用于监视、控制等有一定的实时性要求的数据时的通讯关系,其中绝大部分应该是传送传统上用于实时监控的I/O数据,故以此命名。这种“连接(Connection)”关系的特点是必须预先通过配置工具逐一对与该“连接(Connection)”相关联的应用对象及整个数据链路上的各个节点进行配置和分配固定的资源后才能建立起来,其优势就是一旦建立起这一“连接(Connection)”,则所有加入这一通讯关系的应用对象之间已经对数据内容达成共识,因此所有传送数据均为“元数据”,无需对数据类型或数据本身作任何标识说明或功能描述,传输效率最高,而且整个数据链路已预分配资源,传输可靠性也最高,所以可以满足“实时”控制数据的传送要求。

Explicit Message Connection:主要是针对传送用于工程设计组态、集中管理维护、故障诊断调试等过程中所需传送的非实时信息。它通常是通过点对点的报文传送在两个应用对象之间以相互交互的方式传送,由于报文中的数据内容会随着双方的状态变化和交互过程而变化,因此报文本身必须同时携带对传送数据的类型标识和功能描述,因此将其命名为“显式报文连接(Explicit Message Connection)”。这种“连接(Connection)”关系的特点是通讯双方的任何一方应用对象均可应自身的信息传送需求动态发起和建立这种“连接(Connection)”关系,而且是“点对点”的“双工”通讯模式,非常便于应用对象之间的“交互式对话”。通讯过程结束后即拆除“连接(Connection)”并回收资源,这一模式对“阵发式”信息类数据传送是非常合适的。

Bridged Connection:由于在任何一个较大规模的系统中都不可能或不会将所有的控制元器件集中在一个物理网段中,即一般都可能配置成多个网段互连,可能是“同构网段”,也可能是“异构网段”。而当若有数据需从某一个网段传送到另一网段时,不论是I/O数据还是Explicit Message,则其所要经过的跨网段的中间节点(Bridge)必须承担路由所需的“连接(Connection)”关系,实际上即是该节点必须在其内部分别创建与每个网段“Link Object”相应的“背靠背”的“连接(Connection)”对象。

纵观整个CIP协议规范,其中最具特色的是其“Connection”这一抽象对象,以及非常符合“控制和信息”传送需求的“Connection”分类模型:“I/O Connection”、“Explici

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top