基于石墨烯的微波毫米波器件在国防航空领域的应用
低噪声放大器的主要发展要求是改进性能和降低成本。由于国际通信量年复一年地迅速增加, 所以必须通过改进低噪声放大器的性能来满足不断增加的通信要求。因此,要不懈地不断努力去展宽带低噪声放大器的带宽和降低其噪声温度。从经济观点出发,卫星通信整个系统的成本必须减少到能与海底电缆系统相竞争。降低低噪声放大器的噪声温度是降低卫星通信系统成本的一种最有效的方法,因为地面站天线的直径可以通过改善噪声温度性能而减校
另一方面,在国内卫星通信应用中,重点放在低噪声放大器的不用维修特性以及低噪声和宽带性能,因为在这些系统中越来越广泛地采用无人管理的工作方式, 特别在电视接收地面站中更是如此。
卫星通信用的低噪声放大器可以分为两种类型——低噪声参量放大器和场效应晶体管低噪声放大器。这些低噪声放大器用在几个频段内, 包括4GHz, 12 GHz和毫米波频段。宽带低噪声放大器的实现又有很多种类型。SiGe工艺具有优异的射频性能,更由于其较高的性价比,被广泛应用于移动通信、卫星定位和RFID等市场;SiGe工艺还可以与常规的数字模拟电路相集成,制造出功能完整的SoC芯片。目前采用SiGe材料制作射频集成电路已成为国际上的研究热点。实现前端的低噪声放大器是最近兴起的超宽带射频通信系统中的挑战之一。业界一直在追求完全集成的超宽带通信系统SOC,与其他工艺相比,CMOS工艺更易于系统集成,所以人们设计出了许多的CMOS工艺的超宽带低噪声放大器。
4GHz频段是目前卫星通信最通用的频段,它用于国际卫星通信和国内卫星通信, 包括电视接收地面站。在这些领域内,已经研制出了各种各样的低噪声放大器并已得到了应用。低噪声参量放大器和场效应晶体管低噪声放大器根据其冷却系统可以分为三种类型,即深致冷型式,热电致冷型式和非致冷型式。深致冷低噪声参量放大器在卫星通信的初期得到广泛的使用。而今天,除了一些特殊应用以外,这种型式的参放几乎不象以前那样广泛地使用,这是因为有维修困难等几方面的原因。热电致冷和非致冷低噪声参量放大器主要用在国际卫星通信地面站中,有时也用在国内卫星通信的关键地面站。由于变容管的改进和泵频的提高,这些低噪声放大器几乎具有深致冷参放那样的低噪声温度。场效应晶体管低噪声放大器主要用在国内卫星通信地面站中,特别是用在电视接收地面站中。在这些场合,几乎普遍采用热电致冷和非致冷型式。深致冷型式仅仅用在特殊的场合。
毫米波具有用小口径天线就可产生方向性强的窄波束和很小的旁瓣的特点,使得截获和干扰毫米波信号变得非常困难,因而隐蔽性和反电子侦察能力好,适合在军用保密通信中使用;另外,作为大气窗口频率,它在特殊频率下呈现出低衰减的特点,因此成为卫星、宇航通信的必需的手段;同时它又具有波长短和较强的穿透战场烟雾、尘埃、雨雪等的能力,可为雷达、成像、精确制导等提供较高的目标分辨率和准全天候的作战能力,这些特别的优势使得采用毫米波技术的武器装备,如军用保密通信、导弹或灵巧炸弹的精确制导以及电子对抗和情报侦察等,在现代战争中占有越来越重要的地位。为此,从上世纪80年代初起,美国国防部尖端技术研究规划署(DARPA)、国家航空和宇航局(NASA)一直重点进行毫米波固态器件和电路的研究,目前已经取得了令人瞩目的成果,大量固态器件和芯片应用于新型武器装备上,在提高装备可靠性的同时还能大大缩小体积,满足军方对小型化的需求。目前,毫米波频段已在国外现有装备中使用,基于毫米波固态器件的雷达、精确制导系统、灵巧武器导引头、军用保密通信系统以及电子战对抗系统开始大量装备美军,并且在两次海湾战争和科索沃战争中取得了很好的实战效果。
毫米波频段低噪声放大器具有明确的军事应用背景——先进极高频卫星通信系统(AEHF)。先进极高频卫星通信系统(AEHF)作为新一代的卫星通信系统,用于全球范围的战略与战术指挥与控制通信,它将为所有作战人员提供全球性、高安全性、受保护和持久的通信,还具备监视别国卫星运行的能力。
C4ISR远景图
AEHF卫星具有低速率、中速率波形和扩展速率波形,采用了星上处理技术、星间链路技术,以及轻型多功能通信天线的组合阵列和宽带频率合成技术等,具备抗干扰、低检测概率、低截获概率的特点和先进的加密系统,且能与其他军用网络兼容。AEHF能够支持动中通,能过提供数据、语音、视频会议和图像传输业务,能为国家战略和战术力量在各种级别的冲突中提供安全、可靠的全球卫星通信。它还能为那些需要快速
- 石墨烯的性质及其吸波性和屏蔽性(12-27)
- 石墨烯的应用前景分析(12-26)
- 石墨烯在未来通信领域的应用展望(01-03)
- 石墨烯的制备方法及应用(12-28)
- 石墨烯基本概念与高频特性介绍(10-17)
- 基于石墨烯的场效应管概念(10-17)