微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 基于超材料的新型吸波材料及其天线隐身应用进展

基于超材料的新型吸波材料及其天线隐身应用进展

时间:04-17 来源:化工新型材料 点击:

吸波材料是能有效吸收入射电磁波、降低目标回波强度的一类功能材料。传统的吸波材料大多是基于Salisbury吸收屏原理设计,其典型不足是体积过大。随着通信、隐身等领域对吸波材料性能要求越来越高,传统吸波材料已不能满足民用、尤其是军事应用需求。因此,研制更薄、更轻、频带更宽的新型吸波材料已成为当前的紧迫课题。

超材料(Metamaterial,MTM)是近年来电磁领域的研究热点之一,其特点是具有亚波长的周期性单元结构。该单元结构如同传统材料的原子和分子,通过空间组合,可表现出新的电磁特性和功能。超材料的研究经历了电磁带隙结构(Eleetromagnetie Band Gap,EBG)、左手材料(Left Hand Material,LHM)和基于光学变换的异向介质等发展历程,其特性几乎涵盖电磁领域。研究表明,利用超材料的奇异电磁特性,不仅可改善天线和微波器件性能,研制新型设备,还可为新型吸波材料的研制提供新的技术手段。

综述基于超材料的新型吸波材料及其在天线隐身应用方面的研究进展,对比分析各种吸波材料的特点,展望其在天线隐身领域的应用前景。

1、基于MTM的新型吸波材料

依据MTM的电磁特性,基于MTM的吸波材料,(Metamaterial Absorber,MA)可分为两类:利用同相反射特性的吸波材料和利用媒质参数可调的吸波材料。

1.1、同相反射特性吸波材料

同相反射特性吸波材料依据其同相反射特性角的不同,可分为吸波型吸波材料和干涉型吸波材料两类。

1)、吸波型吸波材料。该吸波材料包括两部分:具有同相反射特性的MTM结构层和损耗层。损耗层材料可以是传统电损耗材料,也可以直接将集总电阻加载在贴片之间作为损耗层,选择适当的电阻值可以在一定频段内较好地吸收入射电磁波。这种结构的设计依然是基于Salisbury屏原理,但由于MTM同相反射特性,不存在0.25 λ波长厚度限制,可以实现超薄特性。

2000年,N.Engheta等首次提出利用MTM同相反射特性实现超薄吸波材料的构想。基于该构想.2005年,S.Simms等利用mushroom-like EBG结构实现了超薄吸波结构,该结构将耗损层放置在离高阻表面很近的地方,从而实现一定频带内的吸波作用。以此设计为基础,Gao等进一步提出外加集总电阻构成吸波结构的方案,并给出反射系数和相位测试参数,如图1,2所示。与Simms等提出的吸波结构相比,Gao等人提出的吸波材料更薄、且结构更为紧凑。

2)、干涉型吸波材料。该吸波材料按电磁波相干涉原理设计。对于传统干涉型吸波材料,当电磁波垂直入射到吸波材料表面时,一部分被反射出去,该反射波称为第一反射波,其余透入材料,在自由空间与材料间界面以及材料与金属界面之间来回反射。当电磁波每次返回自由空间与材料界面时,都有一部分穿出此界面返回自由空间,这部分波叠加后形成第二反射波。若两种反射波处于同一偏振面且相位相差180。则发生干涉,导致总的反射波能量急剧衰减。该吸波材料的缺点是结构较厚,吸收频带较窄。

2007年,Maurice Paquay等利用高阻EBG结构的同相反射特性,设计了一种新型干涉型吸波材料,如图3所示。该吸波材料利用具有完美磁导体(PMC)特性的高阻EBG结构与完美良导体(PEC)结构组成棋盘结构。二者反射相位相差l80。其反射波相互干涉,使来波方向能量衰减,同时将后向散射能量转移到其它角度,如图4所示。鼻锥方向目标RCS可降低20 dB以上,-10 dB吸收带宽为6.45 %,结构厚为0.062 5 λ。针对该设计材料带宽较窄问题,2009年Zhang等分别提出了利用两种具有不同反射相位特征的高阻EBG结构组成棋盘结构的改进方案。通过改进,该型吸波材料的-10 dB吸收带宽分别达到58.5%和32 %,结构厚度降至0.042λ。

1.2、媒质参数可调吸波材料

基于MTM媒质参数可调吸波材料的设计原理为:通过优化MTM结构模型和调控MTM结构单元的电、磁谐振,使ε(w)=μ(w),从而实现吸波材料和自由空间的阻抗匹配。按此设计原理,媒质参数可调吸波材料的电、磁参数在谐振区域具有较大虚部,可确保电磁波达到100 %的吸收率,故这种吸波材料被称为"完美吸波材料(Peffect Metamaterial Absorber,PMA)"。

PMA于2008年由Landy等首先提出,其单元结构和吸收率,如图5,6所示。通过优化单元结构,Landy等实现了单层结构厚度仅为0.007λ、反射率为0.01%、透射率为0.9 %、吸收率高达99 %、半高峰宽(FWHM,吸收率在50 %以上的带宽)只有4 %的PMA。进一步研究还表明:按上述原理设计的PMA,其吸收率随单元层数呈指数增加,且损耗主要来自材料的介质。PMA的研制成功,使其成

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top