基于51单片机的新型冰箱温度控制器系统
0引言
随着生活的改善,消费水平的提高。越来越多的普通居民开始使用冰箱。每年冰箱的市场额都在千万以上。随着中国电子行业的高速发展。一个个新型的企业开始计入抢夺市场的竞争中。使得供应生产商,在保证质量和顾客需要的前提下,纷纷消减陈本,制定不同的战略。目前各大冰箱控制器的生产厂家存在着更加残酷的竞争,只有把握住优质的技术,结合低廉的陈本才能为企业,迎来生存的机会。基于这种情形,我们认为现如今,在家电的低端市场,廉价实用性强的控制器为各大产品提供了巨大优势,这种优势是在竞争中无法忽略的。我们的产品追求廉价实用,节能环保,突出用户地位更加人性化,应用宽泛。
1 系统总体介绍
这是一个基于51单片机的电冰箱控制系统,通过51单片机控制其余的温控设备以及其余的扩展设备,从而达到系统预期的目的。电路简单实用,而且经济廉价,适用于很多场合。51单片机的控制也很方便简单,而且能做到控制系统的作用。
产品特色有:
人机交互式控制,必要时可根据顾客的个人意愿设置停开时间比,满足不同的需要;
成本低,手动调节部分可以控制在10元以下,主控部分在25元以下,甚至可以更低一些;
可人为控制停机,防止因为制冷剂等原因造成不停进而损坏压缩机;
防止因为断电等高压启动损坏压缩机。
2 系统硬件组成
本系统由单片机最小系统、时间控制器、液晶模块、温度采集模块以及给单片机供电的电源模块等模块组成,下面分别做详细的介绍。
2.1 单片机供电电路
单片机工作的电压是5V的直流电,所以我们要为单片机供应持续不变的直流电信号,这样才能保证单片机工作的稳定,以及单片机在处理数据上的持续性。单片机在工作时由时钟频率决定其输出波形。从市用的普通交流电出发,我们可以设计出给单片机供电的电源电路。
首先把交流电接入小型变压器,把220V的交流电变成15V的交流电,然后经过整流桥整流,滤波电路滤波,可以得到接近12V的直流电压,再经过7805的集成稳压片,就可以得到5V的直流电了。当然有时候要采用小型蓄电池作为最初的电源,我们把7805的电路另作一个模块放在一边备用。 电路图如图一:
图一:稳压电路
2.2 时间控制器电路
这是一种小型的低成本时间控制器,可人为设定不同的开停比,控制冰箱开或停,模拟温控过程。电路成本低(小于10元),可靠性较高,适合于广大用户使用。该模块的电路图如图二所示:
图二:时间控制器电路
此电路核心为一片555时基电路,在此构成可调占空比的无稳态多谐振荡器。由555的工作原理可知,其③脚输出电压由②、⑥脚的输入电压决定。R3、D6、RP2、R5、C3构成充电支路,当C3上的电压小于2/3Vcc(Vcc为555的工作电源电压)时,③脚输出高电平,K1释放,LED1熄灭,一旦C3上的充电电压升高至2/3Vcc时,则555内部RS触发器翻转,③脚输出低电平,K1吸合,LED1点亮,同时⑦脚内部的放电管对地导通,C3通过R4、RP1、D5支路对⑦脚放电,直到C3上的电压降至1/3Vcc时,⑦脚停止放电③脚又恢复输出高电平;此后C3又通过充电支路进行充电……周而复始。
充电时间T1=0.693(R3+R5+RP2)C3
放电时间T2=0.693(R4+RP1)C3
设计中R3取16kΩ,R4取100 kΩ,R5取270 kΩ,RP1、RP2均取4.7 MΩ的电位器,C3为1000μF的低漏电铝电解电容器,则T1、T2的定时最长可达约54分钟。由于C3漏电流的存在,实际定时可达80分钟。
电路中,RP1、RP2分别为开机调节及定时调节电位器,LED1、LED2分别定时、电源指示。R1、C1、D1~D4及C2、ZD、R2等组成简单的电容降压稳压电路,提供555时基电路及继电器K1的工作电源。开机后,电路自动进入延时启动状态,如需快速启动,可按一下轻触开关S1,则可实现快启功能。
对于实际的电路图,C1需选用耐压大于400V的聚丙烯电容器。K1可选触点电流大于5A的高灵敏度继电器。C3应选用漏电尽可能低的电解电容器,这样生产时的一致性较好,不然时间误差会很大。
制作完成后,一般情况无须调试。将电冰箱插入CZ上,RP1、RP2调于最小位置(均为5分钟定时),通电后LED2亮。约5分钟后,LED1熄灭、K1释放。如果实现开机时快启,只需按一下S1即可。调节RP1、RP2,即可完成不同的时间通断比,使接于CZ上的电冰箱受其控制而实现节能。
2.3 温度采集电路
我们用到的温度采集芯片是常用的DS18B20,我们用的是形如三极管封装的三脚外形,这种封装的芯片才电路连接上很是方便,三脚分别是电源端、接地端和信号端,只要分别接入电路节能正常工作。但是在用该芯片对温度采集时还得
- 基于单片机通用引脚的软件UART设计(10-16)
- 嵌入式实时操作系统μC/OS-II 在P89V51RD2中的移植(04-09)
- 关于RTX51 TINY的分析与探讨(05-30)
- 双CPU在多I/O口系统中的应用(07-05)
- 一种嵌入式时钟管理器的设计与实现(08-01)
- 基于RTOS的嵌入式系统在Nexar中的实现(01-20)