1.μC/OS-Ⅱ概述 μC/OS-Ⅱ在特定处理器上的移植大部分工作集中在多任务切换的实现上,这部分代码主要用来保存和恢复处理器的现场。但许多操作如读/写寄存器不能用C语言而只能用汇编来实现。 将μC/OS-Ⅱ移植到ARM处理器上,只需要修改与处理器相关的3个文件: OS_CPU.H, OS_CPU_C.C, OS_CPU_A.ASM 。 2.OS_CPU.H的移植 1)数据类型的定义 typedefunsignedcharBOOLEAN; typedefunsignedcharINT8U; typedefsignedcharINT8S; typedefunsignedshortINT16U; typedefsignedshortINT16S; typedefunsignedintINT32U; typedefsignedintINT32S; typedeffloatFP32; typedefdoubleFP64; typedefunsignedintOS_STK; typedefunsignedintOS_CPU_SR; 2)ARM处理器相关的宏定义 #defineOS_ENTER_CRITICAL()ARMDisableINT #defineOS_EXIT_CRITICAL()ARMEnableINT 3)堆栈增长方向的定义 #defineOS_STK_GROWTH1 3.OS_CPU_C.C的移植 1)任务椎栈初始化 任务椎栈初始化函数由OSTaskCreat()或OSTaskCreatEXT()调用,用来初始化任务并返回新的堆栈指针STK.初始状态的堆栈模拟发生一次中断后的堆栈结构,在ARM体系结构下,任务堆栈空间由高到低将依次保存着PC,LR,R12…R0,CPSR,SPSR。堆栈初始化结束后,OSTaskSTKInit()返回新的堆栈栈顶指针OSTaskCreat()或OSTaskCreatEXT()将新的指针保存的OS_TCB中。 OS_STK *OSTaskStkInit (void (*task)(void *p_arg), void *p_arg, OS_STK *ptos, INT16U opt) { OS_STK *stk; opt= opt; stk= ptos; *stk= (OS_STK)task; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = 0; *--stk = unsigned int pdata; *--stk = USER_USING_MODE|0X00; *--stk = 0; return (stk); } 2)系统Hook()函数 这些函数在特定的系统动作时被调用,允许执行函数中的用户代码。这些函数默认是空函数,用户根据实际情况添加相关代码。 OSInitHookBegin() OSInitHookEnd() OSTaskCreateHook() OSTaskDelHook() OSTaskIdleHook() OSTaskStatHook() OSTaskStkInit() OSTaskSwHook() OSTCBInitHook() OSTimeTickHook() 4.OS_CPU_A.ASM的移植 1)退出临界区和进入临界区代码 它们分别是退出临界区和进入临界区代码的宏实现,主要用于在进入临界区之前关闭中断,在退出临界区后恢复原来的中断状态。 ARMDisableINT MRSR0,CPSR; Set IRQ and FIQ bits in CPSR to disable all interrupts ORRR1,R0,#NO_INT MSRCPSR_c,R1 MRSR1,CPSR; Confirm that CPSR contains the proper interrupt disable flags ANDR1,R1,#NO_INT CMPR1,#NO_INT BNEOS_CPU_SR_Save; Not properly disabled (try again) BX LR; Disabled, return the original CPSR contents in R0 ARMEnableINT MSRCPSR_c,R0 BXLR 2)任务级任务切换 任务级任务切换函数OS_TasK_Sw()是当前任务因为被阻塞而主动请求CPU高度时被执行的,由于此时的任务切换都是在非异常模式直进行的,因此区别于中断级别的任务切换。它的工作是先将当前任务的CPU现场保存到该任务的堆栈中,然后获得最高优先级任务的堆栈指针,从该堆栈中恢复此任务的CPU现场,使之继续运行,从而完成任务切换。 OSCtxSw ; SAVE CURRENT TASK'S CONTEXT STMFDSP!, {LR}; Push return address STMFDSP!, {LR} STMFDSP!, {R0-R12}; Push registers MRSR4,CPSR; Push current CPSR TSTLR, #1; See if called from Thumb mode ORRNER4,R4, #0x20; If yes, Set the T-bit STMFDSP!, {R4} LDRR4, OS_TCBCur; OSTCBCur->OSTCBStkPtr = SP; LDRR5, [R4] STRSP, [R5] LDRR0,OS_TaskSwHook; OSTaskSwHook(); MOVLR, PC BXR0 LDRR4,OS_PrioCur; OSPrioCur = OSPrioHighRdy LDRR5,OS_PrioHighRdy LDRBR6, [R5] STRBR6, [R4] LDRR4, OS_TCBCur; OSTCBCur= OSTCBHighRdy; LDRR6, OS_TCBHighRdy LDRR6, [R6] STRR6, [R4] LDRSP, [R6] ; SP = OSTCBHighRdy->OSTCBStkPtr;
;STORE NEW TASK'S CONTEXT LDMFDSP!, {R4}; Pop new task's CPSR MSRSPSR_cxsf, R4 LDMFDSP!, {R0-R12,LR,PC}^; Pop new task's context 3)中断级任务切换函数 ①该函数由OSIntExit()和OSExIntExit()调用,它若在时钟中断ISR中发现有高优先级任务等特的时候信号到来,则需要在中断退出后并不返回被中断的,的而是直接调度就绪的高高优先级任务执行.这样做的目的主要是能够尽快的让优先级高的任务得到响应,进而保证系统的实时性。 OSIntCtxSw LDRR0, OS_TaskSwHook; OSTaskSwHook(); MOVLR, PC BXR0 LDRR4, OS_PrioCur; OSPrioCur = OSPrioHighRdy LDRR5, OS_PrioHighRdy LDRBR6,[R5] STRBR6,[R4] LDRR4,OS_TCBCur ; OSTCBCur= OSTCBHighRdy; LDRR6,OS_TCBHighRdy LDRR6,[R6] STRR6,[R4] LDRSP,[R6]; SP = OSTCBHighRdy->OSTCBStkPtr; ; RESTORE NEW TASK'S CONTEXT LDMFDSP!, {R4}; Pop new task's CPSR MSRSPSR_cxsf, R4 LDMFDSP!, {R0-R12,LR,PC}^; Pop new task's context ②两种形式的中断程序 OS_CPU_IRQ_ISR STMFDSP!, {R1-R3}; PUSH WORKING REGISTERS ONTO IRQ STACK MOVR1, SP; SaveIRQ stack pointer ADD SP, SP,#12; Adjust IRQ stack pointer SUBR2, LR,#4; Adjust PC for return address to task MRSR3, SPSR; Copy SPSR (i.e. interrupted task's CPSR) to R3 MSRCPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode ; SAVE TASK'S CONTEXT ONTO TASK'S STACK STMFDSP!, {R2}; Push task's Return PC STMFDSP!, {LR}; Push task's LR STMFDSP!, {R4-R12}; Push task's R12-R4 LDMFDR1!, {R4-R6} ; Move task's R1-R3 from IRQ stack to SVC stack STMFDSP!, {R4-R6} STMFDSP!, {R0}; Push task's R0onto task's stack STMFDSP!, {R3}; Push task's CPSR (i.e. IRQ's SPSR) LDRR0,OS_IntNesting; OSIntNesting++; LDRBR1, [R0] ADDR1, R1,#1 STRBR1, [R0] CMPR1, #1; if (OSIntNesting == 1) { BNEOS_CPU_IRQ_ISR_1 LDRR4,OS_TCBCur; OSTCBCur->OSTCBStkPtr = SP LDRR5, [R4] STRSP, [R5]; } OS_CPU_IRQ_ISR_1 MSRCPSR_c, #(NO_INT | IRQ32_MODE) ; Change to IRQ mode (to use the IRQ stack to handle interrupt) LDRR0,OS_CPU_IRQ_ISR_Handler; OS_CPU_IRQ_ISR_Handler(); MOVLR, PC BXR0 MSRCPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode LDRR0,OS_IntExit; OSIntExit(); MOVLR, PC BXR0; RESTORE NEW TASK'S CONTEXT LDMFDSP!, {R4} ; Pop new task's CPSR MSRSPSR_cxsf, R4 LDMFDSP!, {R0-R12,LR,PC}^; Pop new task's context RSEG CODE:CODE:NOROOT(2) CODE32 OS_CPU_FIQ_ISR STMFDSP!, {R1-R3}; PUSH WORKING REGISTERS ONTO FIQ STACK MOVR1, SP; SaveFIQ stack pointer ADDSP, SP,#12; Adjust FIQ stack pointer SUBR2, LR,#4; Adjust PC for return address to task MRSR3, SPSR; Copy SPSR (i.e. interrupted task's CPSR) to R3 MSRCPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode ; SAVE TASK'S CONTEXT ONTO TASK'S STACK STMFDSP!, {R2}; Push task's Return PC STMFDSP!, {LR}; Push task's LR STMFDSP!, {R4-R12}; Push task's R12-R4 LDMFDR1!, {R4-R6}; Move task's R1-R3 from FIQ stack to SVC stack STMFDSP!, {R4-R6} STMFDSP!, {R0}; Push task's R0onto task's stack STMFDSP!, {R3}; Push task's CPSR (i.e. FIQ's SPSR) ; HANDLE NESTING COUNTER LDRR0, OS_IntNesting; OSIntNesting++; LDRBR1, [R0] ADDR1, R1,#1 STRBR1, [R0] CMPR1, #1; if (OSIntNesting == 1){ BNEOS_CPU_FIQ_ISR_1 LDRR4, OS_TCBCur; OSTCBCur->OSTCBStkPtr = SP LDRR5, [R4] STRSP, [R5]; } OS_CPU_FIQ_ISR_1 MSRCPSR_c, #(NO_INT | FIQ32_MODE) ; Change to FIQ mode (to use the FIQ stack to handle interrupt) LDRR0, ??OS_CPU_FIQ_ISR_Handler ; OS_CPU_FIQ_ISR_Handler(); MOVLR, PC BXR0 MSRCPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode LDRR0,OS_IntExit; OSIntExit(); MOVLR, PC BXR0; RESTORE NEW TASK'S CONTEXT LDMFDSP!, {R4}; Pop new task's CPSR MSRSPSR_cxsf, R4 LDMFDSP!, {R0-R12,LR,PC}^; Pop new task's context 4)OSStartHighRdy()函数 该函数是在OSStart()多任务启动后,负责从最高优先级任务的TCB控制块中获得该任务的堆栈指针SP通过SP依次将CPU现场恢复。这时系统就将控制权交给用户创建的该任务进程,直到该任务被阻塞或者被更高优先级的任务抢占CPU。该函数仅仅在多任务启动时被执行一次,用来启动第一个也即最高优先级任务。 OSStartHighRdy MSRCPSR_cxsf, #0xD3; Switch to SVC mode with IRQ and FIQ disabled LDRR0, ??OS_TaskSwHook ; OSTaskSwHook(); MOVLR, PC BXR0 LDRR4,OS_Running; OSRunning = TRUE MOVR5, #1 STRBR5, [R4] ; SWITCH TO HIGHEST PRIORITY TASK LDRR4,OS_TCBHighRdy;Get highest priority task TCB address LDRR4, [R4];get stack pointer LDRSP, [R4];switch to the new stack LDRR4,[SP], #4;pop new task's CPSR MSRSPSR_cxsf,R4 LDMFD SP!, {R0-R12,LR,PC}^;pop new task's context 2.多任务应用程序的编写 1)C语言入口函数 函数Main()为C语言入口函数,所有C程序从这里开始运行,在该函数中进行如下操作: ③调用函数ARMTaskgetInit初始化ARM处理器 ④调用OSInit初始化系统 ⑤调用OSTaskCreat函数创建任务:Task1和Task2 ⑥调用ARMTaskgetStart函数启动时钟节拍中断 ⑦调用OSStart启动系统任务调度 #i nclude “config.h” OS_STKTaskStartStk[TASK_STK_SIZE]; OS_STKTaskStk[TASK_STK_SIZE]; int Main(void){ OSInit(); OSTaskCreate(Task1,(void*)0,TaskStartStk[TASK_STK_SIZE-1],0); OSStart(); return(); } 2)任务处理函数 ①Task1 void Task1(void *pdata){ pdata=pdata; TargetInit(); For(;;){ OSTimeDly(OS_TICKS_PER_SEC/50); If(GetKey()!=KEY1){ continue; } OSTaskCreate(Task2,(void *)0,TaskStk[TASK_STK_SIZE-1],10); While(GetKey()!=0){ OSTimeDly(OS_TICKS_PER_SEC/50); } } } ②Task2 void Task2(void *pdata){ pdata=pdata; BeeMoo(); OSTimeDly(OS_TICKS_PER_SEC/8); BeeMoo(); OSTimeDly(OS_TICKS_PER_SEC/4); BeeMoo(); OSTimeDly(OS_TICKS_PER_SEC/8); OSTaskDel(OS_PRIO_SELF); } |