石墨烯基本概念与高频特性介绍
维的石墨,石墨烯的能带结构在理论上已经被研究了几十年,它可以认为是一种零禁带半导体材料,能带交叠为一点,而且由电子完全占据的价带和由空穴完全占据的导带关于这些交叠点( K和K′)完全对称。在K和K′点附近,石墨烯中的电子由于受到周围对称晶格势场的影响,电子的有效质量变为0,传统的描述电子运动的薛定谔方程被狄拉克(Dirac)方程所取代,因此K和K′点也被称为狄拉克点。在狄拉克点处,需要用两套波函数来描述两套的子晶格,类似于描述量子力学中的自旋的波函数,因此称为赝自旋。在狄拉克点附近,能量与波矢成线性的色散关系E =│hk│vF,费米速度是光速的1/300,呈现相对论的特性,因此石墨烯为我们研究量子电动力学现象提供了最直接的实验平台。模拟量子电动力学表述,可以在石墨烯中引入手性。手性和赝自旋是石墨烯的两个重要参量,正是由于手性和赝自旋导致的简并,使石墨烯出现了许多新奇的性质。
石墨烯作为一种半金属材料,内部载流子浓度高达1013cm-2。实验表明,石墨烯的迁移率几乎与温度无关,即使在室温下迁移率也主要受杂质或缺陷的影响,所以可以通过提高晶体质量来提高载流子的迁移率。最近,理论和实验均已证实石墨烯具有双极场效应,通过门电压的调制,它的载流子可以在电子和空穴间连续地过渡,使其显现出n型、p型特性。由于石墨烯特殊的晶体结构和能带结构,通过控制其几何构型及边缘的手性可以使其呈现金属或半导体特性。石墨烯在室温条件下也可以观察到它的量子霍尔效应,这与通常的半导体、金属材料完全不同。不过,石墨烯的电子输运不符合薛定谔方程的描述,而符合狄拉克相对论方程,所以其量子霍尔效应异于传统的二维电子气体:单层石墨烯的量子霍尔效应的量子序数相对于标准的量子霍尔效应的量子序数移动了1/2,而双层石墨烯的量子霍尔效应相对于标准的量子霍尔效应丢失了量子序数为0的第一个平台。
在凝聚态物理领域,材料的电学性能常用薛定谔方程描述。而石墨烯的电子与蜂窝状晶体周期势的相互作用产生了一种准粒子,A.Qaiumzadeht等根据GW近似值计算了石墨烯在无序状态下在朗道费米子液体内的准粒子特性,即零质量的狄拉克-费米子(mass less Dirac Fermions),具有类似于光子的特性,在低能区域适合于采用含有有效光速(vF=106m/s)的(2+1)维狄拉克方程来精确描述。因此,石墨烯的出现为相对论量子力学现象的研究提供了一种重要的手段。
在石墨烯的电学性能研究中发现了多种新奇的物理现象,包括两种新型的量子霍尔效应(整数量子霍尔效应和分数量子霍尔效应),零载流子浓度极限下的最小量子电导率,量子干涉效应的强烈抑制及石墨烯p-n结界面的电流汇聚特性等,石墨烯表现出异常的整数量子霍尔行为,其霍尔电导=2e2/h,6e2/h,l0e2/h…为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为"电子在石墨烯里遵守相对论量子力学,没有静质量(massless electron)"。2007年,先后3篇文章声称在石墨烯的p-n或p-n-p结中观察到了分数量子霍尔行为。理论物理学家已经解释了这一现象。
石墨烯的合成方法主要有微机械分离法、取向附生法、化学分散法、加热SiC法等。
最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年,K.S.Novoselov,A.K.Geim等人通过使用简单的胶带解理体石墨,轻松地获得了单层自由状态的Graphene。Novoselov等利用胶带将石墨逐渐撕薄,在得到的小片石墨薄层的边缘出现单层、双层、三层等Graphene薄片,采用传统光刻工艺,可以将Graphene分离,得到自由状态的Graphene (见下图)。目前,在大部分有关Graphene的研究中,使用的样品是采用此类方法制备。
Graphene薄膜( a)光学显微镜下观测到的大尺度的 Graphene薄片;( b)在薄片边缘的 AFM图像, 2μm ×2μm; ( c)单层Graphene的 AFM图像,深棕色为 SiO2 基底,棕红色为单层 Graphene
取向附生法是利用生长基质原子结构"种"出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子"孤岛"布满了整个基质表面,最终它们可长成完整的一层石墨烯。采用这种方法生产的石墨烯厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。
化学分散法是将氧化石墨与水以1mg/ml的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100℃回流24h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。
加热SiC法是通过加热单晶SiC衬底脱除Si,在表面上
石墨烯 相关文章:
- 石墨烯的性质及其吸波性和屏蔽性(12-27)
- 石墨烯的应用前景分析(12-26)
- 石墨烯在未来通信领域的应用展望(01-03)
- 石墨烯的制备方法及应用(12-28)
- 基于石墨烯的微波毫米波器件在国防航空领域的应用(10-17)
- 基于石墨烯的场效应管概念(10-17)