基于PC104总线的实时信号采集处理系统
摘要:为了满足外场装备检测装置的便携化和信号采集的实时化要求,基于PC104总线的高效数据传输特点,采用了上位机控制板和信号采集板相结合的嵌入式系统搭建方法,在信号采集板中通过FPGA控制逻辑实现了多通道开关、信号调理电路和A/D转换器的配置,并把采集的信号数据传输给上位机控制板进行实时显示。应用结果表明,该实时信号采集处理系统操作简单,具有较高的实时性和稳定性。
关键词:PC104;FPGA;数据采集;嵌入式系统;逻辑控制
0 引言
PC104是嵌入式工控机的一种,其外部总线接口为PC104总线。使用堆叠的方式可以将多个PC104主板结合到一起,并通过螺栓固定,保证系统的牢固可靠,应对恶劣的使用环境。由于PC104具有功耗低,体积小,扩展性高,功能强大等优点,其已经在航空航天、军用武器装备、工业控制等领域得到了广泛的使用。
在对武器装备进行测试维护时,经常需要对设备中的各类模拟信号进行分析,从而对武器系统的运行情况做出判断。目前常见的测试设备往往实时性不高,无法更多地进行人机交互。同时由于测试设备体积过于庞大,并不方便在外场对武器装备进行直接的测试和维护。随着现阶段军用装备外场测试的信息化程度逐渐提高,迫切需要研制出体积小、结构紧凑的便携式实时测试设备。
目前主流的实时信号采集方式是通过高速A/D转换器件来完成的,其优点是信号精度高,实时的信号采集带来了大量的数据需要处理,对后端的信号处理系统提出了较高的要求。因此本文搭建了基于PC104总线的实时信号采集处理系统,凭借FPGA的高速处理能力控制A/D转换器完成数据的采集,并通过PC104总线将数据提供给上位机完成用户对实时信号的监测。
1 总体设计方案
本文的实时信号采集处理系统主要包括信号采集板和上位机控制板2部分,两者之间通过PC104总线进行通信。上位机控制板以CPU为核心,扩展出VGA,RJ45等人机交互所需要的外围设备接口。信号采集板主要包括了FPGA逻辑控制、A/D转换器、通道选择开关、前端信号调理器等。实时信号采集处理系统的总体结构图如图1所示。
信号采集处理系统进行工作时,上位机控制板的CPU通过PC104总线向底层信号采集板发送命令,对其工作参数进行设置。CPU与FPGA之间通过地址和数据总线完成命令及数据的交互。多通道选择开关对外部输入的模拟信号进行通道选择,在信号调理芯片对模拟信号进行相应的预处理之后,在FPGA的逻辑控制下由A/D转换器完成信号的采集。FPGA通过PC104总线实时地将采集的信号数据传输给CPU,通过运行在上位机控制板的应用程序完成数据的最终分析和处理。信号采集处理系统可以通过FPGA逻辑控制模块灵活地调整采样速率,来满足多种信号不同速率的采样要求。
2 硬件系统设计
2.1 上位机控制板
本系统采用深圳盛博公司的PC104模块SCM9022作为上位机控制系统硬件平台,其处理器为英特尔凌动N455处理器,使用了1 GB的DDR3内存,支持2 GB的SSD和1路SATA接口,支持2个100 Base-T以太网口,具有8路GPIO接口和6个串口,4个USB 2.0接口,标准鼠标键盘接口,支持18位的LVDS和VGA显示。SCM9022的硬件资源可以满足对所需要采集信号的处理,用户可以方便地使用其通用的外设接口完成必要的人机交互。上位机控制板包括了64针脚的双排单列插针J1和40针脚的双排单列插针J2,总共104根信号总线。上位机控制板是标准的PC104模块,其尺寸为96 mmx90 mm。当工作在8 b数据模式下时,J2的针脚信号无效,只有J1针脚有效;当工作在16 b数据模式下时,J1和J2所有针脚都有效。在104个针脚中,包括了16个数据针脚,7个锁存地址针脚,20个地址针脚,32个控制针脚,14个地线和电源线,1个14 MHz的OSC,1个8 MHz的BCLK。其中,SA[0..11]为地址总线;SD[0..7]为数据总线;IOR为输入/输出接口的读控制,低电平有效;IOW为输入/输出接口的写控制,低电平有效;DATA为串行数据;BALE为地址锁存信号;CLK为移位脉冲;SY-CLK为总线时钟;IOCHADY为输入/输出接口的准备就绪信号,该信号由集电极开路门或三态门驱动,低电平时处于无效状态,表示输入/输出接口设备需要将总线的周期延长。时序如图2所示。
2.2 信号采集板
为了能快速高效保证上位机控制板与信号采集板之间的PC104总线数据通信,底层的信号采集板使用了Altera公司的CycloneⅢ系列FPGA芯片EP3C25F256C7N,通过控制逻辑来按照PC104总线的时序进行数据传输。该芯片具有200 Kb逻辑单元、8 Mb嵌入式存储器以及396个嵌入式乘法器能够在控制信号采集芯片的同时,将采集的信号数据传输给上位机。需要注意的是,由于PC 104总线的针脚都是5 V电平,而FPGA芯片采用了3.3 V的电平信号,所以在信号采集板上使用了74LVH162245芯片对电平进行转换,调整电气特性,完成由TTL电平向LVTTL电平的转换,并增强驱动能力。在信号的采集过程中,由于外部的多路模拟输入信号往往比较微弱,其电平的幅度很小,为了保证A/D转换模块采集到足够强的信号幅度,在信号采集板中使用了放大器INA103把输入信号进行调理放大到0~10 V之间。INA103是由BB公司生产的低功率增益可调通用仪器放大器,其具有高精度宽带宽的特点。在增益为100时,对应的带宽仍达到200 kHz。该芯片采用了可调电阻调整放大倍数,具体公式如式(1)所示:
G=1+6 kΩ/R (1)
本系统在信号采集板中采用了R=6 Ω,故得到的放大倍数在0~1001之间,保证了该芯片输出给A/D转换器的信号电平在0~10 V之间。信号采集板的多路选择开关采用了AD公司的ADG508A八选一高速选通开关。系统通过2片ADG508A并行控制模拟信号的输入,实现了对16路信号的实时采集。多路开关的输入通断是通过控制使能引脚EN以及CH0,CH1,CH2来完成的,FPGA输出的地址的最高位分别接到2片ADG508A的使能端,地址低3位分别接入ADG508A的AO,A1,A2。信号采集板的A/D转换芯片采用了BB公司的ADS7805,其具有高速、低功耗的特点。在5 V的工作电压下其最高的转换频率达到了100 kHz。该芯片内部自带有时钟、电压基准和采样保持等电路,极大的简化了用户的电路设计,并且提高了系统的稳定性。ADS7805采用了逐次逼近式工作原理,A/D转换结果通过16位数据总线并行输出,输入的模拟信号电平范围为0~10 V,其工作时序图如图3所示。
- DSP HPI口与PC104总线接口的FPGA设计(04-14)
- 基于VxWorks的双端口网卡智能双冗余驱动(07-01)
- 基于DSP的PDIUSBD12芯片系统的应用开发(07-06)
- PC/104总线与HPI口通信的解决方案(12-21)
- 工控机总线——PC/104总线、PC/104Plus(12-16)
- 基于1553B总线的PC/104测控系统(12-12)