微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 一种高性能时钟晶体振荡器电路设计

一种高性能时钟晶体振荡器电路设计

时间:10-22 来源:互联网 点击:

。电路在上电时,振荡输出振幅为0,使反向放大器具有大的偏置电流,有利于起振。其电路如图2中振幅控制模块所示。M1、M2、M4、M5和R1构成与电源电压无关的偏置电流源,M1和M2的宽长比比值为1:2,M4,M5的宽长比的比值为1:8。为降低功耗,设计使偏置电流源中的MOS管工作在亚阈值区,设流过M1管的电流为2I,可得到

其中,ID4、ID5分别为流过M4,M5的电流,N为亚阈值斜率参数。将VGS4-VGS5=4I×R1,代入等式(4)中可得

,该偏置电流与电源无关,通过选取适当的R1值,便可设置所需的偏置电流。设计取电流I≈8 nA,确保电路具有较低的功耗。

图2中电阻R2跨接在M4栅漏两端,MOS管的栅端无电流,因此M4栅漏间的直流电压相等。若漏电流保持不变,M4栅极上的平均电压应保持不变。当振荡器开始工作后,振荡输出的信号经电容C0隔直通交后,传递M4的栅极。当振幅增大时,若要保持恒定的偏置电流不变,M4栅极直流电压必定下降,因此M5的栅极电压也必定随着振幅增大而下降,从而使偏置电流I减小。反向放大器的偏置电流由电流源M3确定,大小为16I,因而当振荡器的输出振幅振荡增大时,系统降低反向放大器的偏置电流,以到达稳定振幅、减小功耗的目的。

2.3 反向放大电路模块与启动电路模块的设计

改进后的电路结构还包含反向放大电路模块和启动电路模块。反相放大电路采用恒流偏置共源放大器,由M3提供恒流偏置,M6为共源放大管,R3为负反馈电阻。恒流偏置电流的大小为16I,受振幅控制电路调制。

启动电路模块,保证电路上电后能正常启动。在直流偏置未建立时,M9输出电流为0,M10导通使反相器I1输出低电平,PMOS管M11导通,给电容C3充电,使B点电压升高,从而M2,M5导通,保证偏置电流可正常建立。当直流偏置建立后,M9通过镜像产生10I的电流,M10管的栅长值L过大,使反向器I1输出变为高电平,关断M11,电路完成启动。

3 电路仿真结果及讨论

3.1 晶体振荡电路环路增益与相位仿真

仿真采用0.5μm-5 V CMOS工艺模型,仿真温度设定25℃,仿真工具是Spectre。图3是设计的晶体振荡电路环路增益与相位仿真结果,电源电压分别设定为3 V和1.1 V,晶体负载电容为6 pF的条件下,从仿真图中可看出,在频率为32.768 1 kHz处,环路增益为5.285 5,相位为0,在该频率处满足振荡的条件。当电压下降到1.1 V时,同样在频率为32.7681kHz处,环路增益为3.833 0,相位为0,也满足振荡条件。这表明其可在1.1V电压下正常振荡,电路具有较宽的工作电压范围。

3.2 晶体振荡电路瞬态仿真

图4和图5均为电源电压为3 V时,振荡电路的瞬态仿真结果,其分别反映了振荡电路的输出波形以及电路消耗的电流。从图中可看出,振幅控制的过程:在起振初期振幅较小时,电路消耗较大的电流,随着振幅的增大,振幅控制电路调控偏置电流,使电路消耗的电流降低。当电路稳定后,电流最终消耗值约为130 nA,振荡电路输出波形峰峰值为367.2 mV。电路消耗极低的功耗,且起振时间1 s。

3.3 频率校准仿真

图6为频率校准范围的仿真图,设计取Cx=4.4 pF,C=62fF。调整校正寄存器的存储值,使晶体振荡器的负载电容分别为最大值、初始值和最小值。仿真得到满足起振条件的初始频率为32.768 1 kHz,频率校准范围为(32.765 8 kHz,32.777 9 kHz),校准的平均精度为1.44ppm。通过校准电路可获得高精度的输出频率。

4 结束语

高精度使得时钟芯片的市场前景广阔。本文对传统Pierce振荡器结构进行了改进,反向放大器采用恒流源供电,增加振幅控制及频率校准电路。仿真结果表明,新结构的电路具有低功耗、高输出频率精度和宽工作电压范围等优点。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top