微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > arm linux 从入口到start_kernel 代码分析

arm linux 从入口到start_kernel 代码分析

时间:11-09 来源:互联网 点击:
分类:LINUX

本文针对arm linux, 从kernel的第一条指令开始分析,一直分析到进入start_kernel()函数.
我们当前以linux-2.6.19内核版本作为范例来分析,本文中所有的代码,前面都会加上行号以便于和源码进行对照.
例:
在文件init/main.c中:
00478: asmlinkage void __init start_kernel(void)
前面的"00478:" 表示478行,冒号后面的内容就是源码了.
在分析代码的过程中,我们使用缩进来表示各个代码的调用层次.
由于启动部分有一些代码是平台特定的,虽然大部分的平台所实现的功能都比较类似,但是为了更好的对code进行说明,对于平台相关的代码,我们选择at91(ARM926EJS)平台进行分析.
另外,本文是以uncompressed kernel开始讲解的.对于内核解压缩部分的code,在 arch/arm/boot/compressed中,本文不做讨论.
一. 启动条件
通常从系统上电到执行到linux kenel这部分的任务是由boot loader来完成.
关于boot loader的内容,本文就不做过多介绍.
这里只讨论进入到linux kernel的时候的一些限制条件,这一般是boot loader在最后跳转到kernel之前要完成的:
1. CPU必须处于SVC(supervisor)模式,并且IRQ和FIQ中断都是禁止的;
2. MMU(内存管理单元)必须是关闭的, 此时虚拟地址对物理地址;
3. 数据cache(Data cache)必须是关闭的
4. 指令cache(Instruction cache)可以是打开的,也可以是关闭的,这个没有强制要求;
5. CPU 通用寄存器0 (r0)必须是 0;
6. CPU 通用寄存器1 (r1)必须是 ARM Linux machine type (关于machine type, 我们后面会有讲解)
7.CPU 通用寄存器2 (r2) 必须是 kernel parameter list 的物理地址(parameter list是由bootloader传递给kernel,用来描述设备信息属性的列表,详细内容可参考"Booting ARM Linux"文档).
二. starting kernel
首先,我们先对几个重要的宏进行说明(我们针对有MMU的情况):

宏 位置 默认值 说明
KERNEL_RAM_ADDRarch/arm/kernel/head.S +26 0xc0008000 kernel在RAM中的的虚拟地址
PAGE_OFFSET include/asm-arm/memeory.h+50 0xc0000000 内核空间的起始虚拟地址
TEXT_OFFSET arch/arm/Makefile +137 0x00008000 内核相对于存储空间的偏移
TEXTADDR arch/arm/kernel/head.S+49 0xc0008000 kernel的起始虚拟地址
PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平台相关 RAM的起始物理地址

内核的入口是stext,这是在arch/arm/kernel/vmlinux.lds.S中定义的:
00011: ENTRY(stext)
对于vmlinux.lds.S,这是ld script文件,此文件的格式和汇编及C程序都不同,本文不对ld script作过多的介绍,只对内核中用到的内容进行讲解,关于ld的详细内容可以参考ld.info
这里的ENTRY(stext) 表示程序的入口是在符号stext.
而符号stext是在arch/arm/kernel/head.S中定义的:
下面我们将arm linux boot的主要代码列出来进行一个概括的介绍,然后,我们会逐个的进行详细的讲解.
在arch/arm/kernel/head.S中 72 - 94 行,是arm linux boot的主代码:
00072: ENTRY(stext)
00073:msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
00074: @ and irqs disabled
00075:mrc p15, 0, r9, c0, c0@ get processor id
00076:bl __lookup_processor_type@ r5=procinfo r9=cpuid
00077:movs r10, r5 @ invalid processor (r5=0)?
00078:beq __error_p @ yes, error p
00079:bl __lookup_machine_type@ r5=machinfo
00080:movs r8, r5 @ invalid machine (r5=0)?
00081:beq __error_a @ yes, error a
00082:bl __create_page_tables
00083:
00084:
00091:ldr r13, __switch_data@ address to jump to after
00092: @ mmu has been enabled
00093:adr lr, __enable_mmu@ return (PIC) address
00094:add pc, r10, #PROCINFO_INITFUNC

其中,73行是确保kernel运行在SVC模式下,并且IRQ和FIRQ中断已经关闭,这样做是很谨慎的.
arm linux boot的主线可以概括为以下几个步骤:
1. 确定 processor type (75 - 78行)
2. 确定 machine type (79 - 81行)
3. 创建页表 (82行)
4. 调用平台特定的__cpu_flush函数 (在structproc_info_list中) (94 行)
5. 开启mmu (93行)
6. 切换数据 (91行)

最终跳转到start_kernel (在__switch_data的结束的时候,调用了 b start_kernel)
下面,我们按照这个主线,逐步的分析Code.

1. 确定 processor type
arch/arm/kernel/head.S中:
00075:mrc p15, 0, r9, c0, c0@ get processor id
00076:bl __lookup_processor_type@ r5=procinfo r9=cpuid
00077:movs r10, r5 @ invalid processor (r5=0)?
00078:beq __error_p @ yes, error p
75行: 通过cp15协处理器的c0寄存器来获得processor id的指令. 关于cp15的详细内容可参考相关的arm手册
76行: 跳转到__lookup_processor_type.在__lookup_processor_type中,会把processor type 存储在r5中
77,78行: 判断r5中的processor type是否是0,如果是0,说明是无效的processor type,跳转到__error_p(出错)
__lookup_processor_type 函数主要是根据从cpu中获得的processor id和系统中的proc_info进行匹配,将匹配到的proc_info_list的基地址存到r5中, 0表示没有找到对应的processor type.
下面我们分析__lookup_processor_type函数
arch/arm/kernel/head-common.S中:
00145:.type __lookup_processor_type, %function
00146: __lookup_processor_type:
00147:adr r3, 3f
00148:ldmda r3, {r5 - r7}
00149:sub r3, r3, r7 @ get offset between virt&phys
00150:add r5, r5, r3 @ convert virt addresses to
00151:add r6, r6, r3 @ physical address space
00152: 1: ldmia r5, {r3, r4} @ value, mask
00153:and r4, r4, r9 @ mask wanted bits
00154:teq r3, r4
00155:beq 2f
00156:add r5, r5, #PROC_INFO_SZ@ sizeof(proc_info_list)
00157:cmp r5, r6
00158:blo 1b
00159:mov r5, #0 @ unknown processor
00160: 2: mov pc, lr
00161:
00162:
00165: ENTRY(lookup_processor_type)
00166:stmfd sp!, {r4 - r7, r9, lr}
00167:mov r9, r0
00168:bl __lookup_processor_type
00169:mov r0, r5
00170:ldmfd sp!, {r4 - r7, r9, pc}
00171:
00172:
00176:.long __proc_info_begin
00177:.long __proc_info_end
00178: 3: .long .
00179:.long __arch_info_begin
00180:.long __arch_info_end
145, 146行是函数定义
147行: 取地址指令,这里的3f是向前symbol名称是3的位置,即第178行,将该地址存入r3.
这里需要注意的是,adr指令取址,获得的是基于pc的一个地址,要格外注意,这个地址是3f处的"运行时地址",由于此时MMU还没有打开,也可以理解成物理地址(实地址).(详细内容可参考arm指令手册)

148行: 因为r3中的地址是178行的位置的地址,因而执行完后:
r5存的是176行符号 __proc_info_begin的地址;
r6存的是177行符号 __proc_info_end的地址;
r7存的是3f处的地址.
这里需要注意链接地址和运行时地址的区别. r3存储的是运行时地址(物理地址),而r7中存储的是链接地址(虚拟地址).
__proc_info_begin和__proc_info_end是在arch/arm/kernel/vmlinux.lds.S中:
00031:__proc_info_begin = .;
00032: *(.proc.info.init)
00033:__proc_info_end = .;
这里是声明了两个变量:__proc_info_begin 和 __proc_info_end,其中等号后面的"."是location counter(详细内容请参考ld.info)
这三行的意思是: __proc_info_begin的位置上,放置所有文件中的 ".proc.info.init" 段的内容,然后紧接着是 __proc_info_end 的位置.
kernel 使用struct proc_info_list来描述processor type.
在 include/asm-arm/procinfo.h 中:
00029: struct proc_info_list {
00030:unsigned intcpu_val;
00031:unsigned intcpu_mask;
00032:unsigned long__cpu_mm_mmu_flags;
00033:unsigned long__cpu_io_mmu_flags;
00034:unsigned long__cpu_flush;
00035:const char*arch_name;
00036:const char*elf_name;
00037:unsigned intelf_hwcap;
00038:const char*cpu_name;
00039:struct processor *proc;
00040:struct cpu_tlb_fns *tlb;
00041:struct cpu_user_fns *user;
00042:struct cpu_cache_fns *cache;
00043: };
我们当前以at91为例,其processor是926的.
在arch/arm/mm/proc-arm926.S 中:
00464:.section ".proc.info.init", #alloc, #execinstr
00465:
00466:.type __arm926_proc_info,#object
00467: __arm926_proc_info:
00468:.long 0x41069260 @ ARM926EJ-S (v5TEJ)
00469:.long 0xff0ffff0
00470:.long PMD_TYPE_SECT | \
00471: PMD_SECT_BUFFERABLE | \
00472: PMD_SECT_CACHEABLE | \
00473: PMD_BIT4 | \
00474: PMD_SECT_AP_WRITE | \
00475: PMD_SECT_AP_READ
00476:.long PMD_TYPE_SECT | \
00477: PMD_BIT4 | \
00478: PMD_SECT_AP_WRITE | \
00479: PMD_SECT_AP_READ
00480:b __arm926_setup
00481:.long cpu_arch_name
00482:.long cpu_elf_name
00483:.longHWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_VFP|HWCAP_E

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top