linux2.6.26内核中ARM中断实现详解
一、中断注册方法
在linux内核中用于申请中断的函数是request_irq(),函数原型在Kernel/irq/manage.c中定义:
int request_irq(unsigned int irq, irq_handler_t handler,
unsigned long irqflags, const char *devname, void *dev_id)
irq是要申请的硬件中断号。
handler是向系统注册的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递给它。
irqflags是中断处理的属性,若设置了IRQF_DISABLED (老版本中的SA_INTERRUPT,本版zhon已经不支持了),则表示中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断,慢速处理程序不屏蔽;若设置了IRQF_SHARED (老版本中的SA_SHIRQ),则表示多个设备共享中断,若设置了IRQF_SAMPLE_RANDOM(老版本中的 SA_SAMPLE_RANDOM),表示对系统熵有贡献,对系统获取随机数有好处。(这几个flag是可以通过或的方式同时使用的)
dev_id在中断共享时会用到,一般设置为这个设备的设备结构体或者NULL。
devname设置中断名称,在cat /proc/interrupts中可以看到此名称。
request_irq()返回0表示成功,返回-INVAL表示中断号无效或处理函数指针为NULL,返回-EBUSY表示中断已经被占用且不能共享。
关于中断注册的例子,大家可在内核中搜索下request_irq。
在编写驱动的过程中,比较容易产生疑惑的地方是:
1、中断向量表在什么位置?是如何建立的?
2、从中断开始,系统是怎样执行到我自己注册的函数的?
3、中断号是如何确定的?对于硬件上有子中断的中断号如何确定?
4、中断共享是怎么回事,dev_id的作用是?
本文以2.6.26内核和S3C2410处理器为例,为大家讲解这几个问题。
二、异常向量表的建立
在ARM V4及V4T以后的大部分处理器中,中断向量表的位置可以有两个位置:一个是0,另一个是0xffff0。可以通过CP15协处理器c1寄存器中V位(bit[13])控制。V和中断向量表的对应关系如下:
V=0 ~ 0x00~0x1C
V=1 ~ 0xffff0~0xffff001C
arch/arm/mm/proc-arm920.S中
.section ".text.init", #alloc, #execinstr
__arm920_setup:
…… orr r0, r0, #0x2100 @ ..1. ...1 ..11 ...1
//bit13=1 中断向量表基址为0xFFFF0。R0的值将被付给CP15的C1.
在linux中,向量表建立的函数为:
init/main.c->start_kernel()->trap_init()
void __init trap_init(void)
{
unsigned long vectors = CONFIG_VECTORS_BASE;
……
memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);
....
}
在2.6.26内核中CONFIG_VECTORS_BASE最初是在各个平台的配置文件中设定的,如:
arch/arm/configs/s3c2410_defconfig中
CONFIG_VECTORS_BASE=0xffff0
__vectors_end 至 __vectors_start之间为异常向量表。
位于arch/arm/kernel/entry-armv.S
.globl __vectors_start
__vectors_start:
swi SYS_ERROR0:
b vector_und + stubs_offset //复位异常:
ldr pc, .LCvswi + stubs_offset //未定义指令异常:
b vector_pabt + stubs_offset //软件中断异常:
b vector_dabt + stubs_offset //数据异常:
b vector_addrexcptn + stubs_offset //保留:
b vector_irq + stubs_offset //普通中断异常:
b vector_fiq + stubs_offset //快速中断异常:
.globl __vectors_end:
__vectors_end:
__stubs_end 至 __stubs_start之间是异常处理的位置。也位于文件arch/arm/kernel/entry-armv.S中。vector_und、vector_pabt、vector_irq、vector_fiq都在它们中间。
stubs_offset值如下:
.equ stubs_offset, __vectors_start + 0x200 - __stubs_start
stubs_offset是如何确定的呢?(引用网络上的一段比较详细的解释)
当汇编器看到B指令后会把要跳转的标签转化为相对于当前PC的偏移量(±32M)写入指令码。从上面的代码可以看到中断向量表和stubs都发生了代码搬移,所以如果中断向量表中仍然写成b vector_irq,那么实际执行的时候就无法跳转到搬移后的vector_irq处,因为指令码里写的是原来的偏移量,所以需要把指令码中的偏移量写成搬移后的。我们把搬移前的中断向量表(__vectors_start 到 __vectors_end之间的区域)中的irq入口地址记irq_PC,它在中断向量表的偏移量就是irq_PC-vectors_start, vector_irq在
linux2 6 26内核ARM中断实 相关文章:
- Linux2.6.36移植到飞凌S3C6410开发板 步骤(11-23)
- Linux2.6.22内核移植(11-21)
- 基于3c2410的linux2.6.22移植(3)(11-20)
- 基于3c2410的linux2.6.22移植(2)(11-20)
- 基于3c2410的linux2.6.22移植(6)(11-20)
- 基于3c2410的linux2.6.22移植(5)(11-20)