石墨烯的应用前景分析
日报道,美国科研人员利用石墨烯制造纳米电路领域取得突破性进展。设计出了简便、快速的纳米电线制造方法,能够调谐石墨烯的电学特征,使氧化石墨烯从绝缘物质变成导电物质。
美国曼彻斯特大学的研究人员用石墨烯制成了分子级电子电路。石墨烯可以被刻成拥有单个晶体管的电子电路,其尺寸不比分子大多少,晶体管尺寸越小,其功能越强。研究人员还表示,从氧化石墨烯到石墨烯的简单转换是制造导电性纳米线的重要途径,其不仅可应用于软性电子学领域,还有望用于生产与生物兼容的石墨烯电线,可被用于测量单个生物细胞的电子信号。
5、优良的太阳能电池
因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。透明的石墨烯薄可制成优良的太阳能电池。美国鲁特格大学开发出一种制造透明石墨烯薄膜的技术,这是一种几厘米宽、1~5nm厚的薄膜。石墨烯薄膜是一种平坦的单原子碳薄,可用于取代透明导电的ITO电极用于有机太阳能电池。这些薄膜还用于取代显示屏中的硅薄膜晶体管。石墨烯运送电子的速度比硅快几十倍,因而用石墨烯制成的晶体管工作得更快、更省电。美国南加州大学的研究人员开发了一种柔性碳原子薄膜透明材料,并用它制作出有机太阳电池。
6、单分子传感器
美国伦斯勒理工学院的研究者最近发表的三项新研究成果表明石墨烯应该用于制造风力涡轮机和飞机机翼的增强复合材料。石墨烯可用作吸附剂、催化剂载体、热传输媒体,可制成具有精细结构的电子元件,应用于电池/电容器,即使在生物技术方面也可得到应用。
2010年,美国莱斯大学利用该石墨烯量子点,制作单分子传感器。莱斯大学将石墨烯薄片与单层氦合形成石墨烷。氦使导电的石墨烯变换成为绝缘的石墨烷。研究人员移除石墨烯薄片两面的氦原子岛,就形成了被石墨烷绝缘体包围的、微小的导电的石墨烯阱。该导电的石墨烯阱就可作为量子阱。量子点的半导体特性要优于体硅材料器件。这一技术可用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等。
7、触摸面板试制品不断面世
透明导电膜这一用途备受期待的原因在于,石墨烯具备较高的载流子迁移率且厚度较薄。一般来说,高透明性与高导电性是互为相反的性质。从这一点来看,ITO正好处在透明性与导电性微妙的此消彼长(Trade-off)关系的边缘线上(如下图)。这也是超越ITO的替代材料迟迟没有出现的原因。
石墨烯在理论上有望避开这种此消彼长的关系成为理想的透明导电膜。其原因是,由于载流子迁移率非常高,即使载流子密度较低,导电性也不容易下降。而载流子密度较低的话,会比较容易穿过更大波长范围的光。相当于单个原子的超薄厚度同样有助于提高透明性。不仅是可见光,石墨烯还可透过大部分红外线,这一性质目前已为人所知。因此,对于还希望利用红外线来发电的太阳能电池而言,石墨烯有望成为划时代的透明导电膜。与不适于弯曲的ITO相比,还具备柔性较高的优势。
不过,透明导电膜目前还存在很多问题。由于制作大面积石墨烯时会混入很多杂质及缺陷,因此大多数试制品的导电性及透明性都未达到ITO的水平。即便如此,石墨烯仍有望用来制作触摸面板如下图所示。
a. 为产综研以石墨烯为透明导电膜制作的触摸面板。b. 为使用CNT的例子。c. 表示试制例的性能及用途。d. 由产综研提供。
这个触摸屏的工作原理很容易理解,触摸屏由上下两层粘在PET薄膜上的石墨烯构成,没有接触的情况下,两层石墨烯被下层上放置的绝缘点阵阻隔而互不接触。当外界压力存在的时候,PET薄膜和石墨烯在压力下发生形变,这样上下两层石墨烯就发生接触,电路连通。接触的位置不同,器件边缘电极收集到的电信号也不一样,通过对电信号的分析,就可以确定是触摸屏上的哪个位置发生了接触。三星公司的成功,让人们看到,这种生成大尺寸石墨烯的方法完全适合于工业应用,而且相对于传统方法,成本低了很多。
8、石墨烯纳米生物传感器
2010年3月,在中国科学院院长特别基金和国家自然基金项目的支持下,国家纳米科学中心石墨烯纳米生物传感器研究取得突破。国家纳米科学中心和美国哈佛大学合作首次成功制备了石墨烯与动物心肌细胞的人造突触,建立了一维、二维纳米材料与细胞相结合的独特研究体系,为生物电子学的研究带来了新的机遇。
9、高速光学调制器
美国华裔科学家使用纳
- 石墨烯的性质及其吸波性和屏蔽性(12-27)
- 石墨烯在未来通信领域的应用展望(01-03)
- 石墨烯的制备方法及应用(12-28)
- 石墨烯基本概念与高频特性介绍(10-17)
- 基于石墨烯的微波毫米波器件在国防航空领域的应用(10-17)
- 基于石墨烯的场效应管概念(10-17)