微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > ARM 浮点运算详解

ARM 浮点运算详解

时间:11-20 来源:互联网 点击:
一:早期ARM上的浮点模拟器:

早期的ARM没有协处理器,所以浮点运算是由CPU来模拟的,即所需浮点运算均在浮点运算模拟器(float math emulation)上进行,需要的浮点运算,常要耗费数千个循环才能执行完毕,因此特别缓慢。

直到今天,在ARM Kernel配置时,都有如下选项:

Floating point emulation --->

[ ] NWFPE math emulation

[ ] FastFPE math emulation (EXPERIMENTAL)

在这里,可以配置ARM 浮点模拟器。

浮点模拟器 模拟浮点是利用了undefined instrction handler,在运算过程中遇到浮点计算是产生异常中断,这么做带来的后果是带来极频繁的exception,大大增加中断延迟,降低系统实时性。

二:软浮点技术:

软浮点支持是由交叉工具链提供的功能,与Linux内核无关。当使用软浮点工具链编译浮点操作时,编译器会用内联的浮点库替换掉浮点操作,使得生成的机器码完全不含浮点指令,但是又能够完成正确的浮点操作。

三:浮点协处理器:

在较新版本的ARM中,可以添加协处理器。 一些ARM CPU为了更好的处理浮点计算的需要,添加了浮点协处理器。

并定义了浮点指令集。 如果不存在实际的硬件,则这些指令被截获并由浮点模拟器模块(FPEmulator)来执行。

四: 硬件浮点协处理器以及对应指令集的使用:

想要使用硬件浮点协处理器来帮助运算Application中的浮点运算。需要以下几个前提条件:

1. Kernel中设置支持硬件协处理器。

2. 编译器支持将浮点运算翻译成硬件浮点运算指令,或者在需要浮点运算的时候手动调用相应的浮点运算指令。

1. Kernle的支持:

如果Kernel不支持浮点协处理器,则因为协处理器寄存器等使用权限等问题,协处理器对应指令无法运行。

网络上有位高手指出:

CP15 c1 协处理器访问控制寄存器,这个寄存器规定了用户模式和特权对协处理器的访问权限。我们要使用VFP当然要运行用户模式访问CP10和CP11。
另外一个寄存器是VFP的FPEXC Bit30这是VFP功能的使用位。
其实操作系统在做了这两件事情之后,用户程序就可以使用VFP了。当然,Kernel 除了这2件事外,还处理了其他一些事情。

Floating point emulation --->
[*]VFP-format floating point maths

Include VFP support code in the kernel. This is needed IF your hardware includes a VFP unit.

2. 编译器指定浮点指令:

编译器可以显式指定将浮点运算翻译成何种浮点指令。

如果编译器支持软浮点,则其可能会将浮点运算翻译成编译器中自带的浮点库。则不会有真正的浮点运算。

否则,可以翻译成FPA(FloatingPointAccelerator)指令。 FPA指令再去查看是否有浮点模拟器。

还可以将浮点运算指定为VFP(vectorfloating point)指令或者neon向量浮点指令。

五. 编译器指定编译硬浮点指令:

测试浮点加减乘除等运算的时间长度:

float src_mem_32[1024] = {1.024};

float dst_mem_32[1024] = {0.933};

for(j = 0; j < 1024; j++)
{
for(i = 0; i < 1024; i++)
{
src_32 = src_mem_32[i] + dst_mem_32[i];
}
}

通过printf 计算前后毫秒数的差值来看计算能力。

编译:

arm-hisiv200-linux-gcc -c -Wall fcpu.c -o fcpu.o

arm-hisiv200-linux-gcc fcpu.o -o FCPU -L./

运行,则得到32位浮点数加1024次所需要时间。

如果要使用VFP呢?

arm-hisiv200-linux-gcc -c -Wall -mfpu=vfp -mfloat-abi=softfp fcpu.c -o fcpu.o

arm-hisiv200-linux-gcc -Wall -mfpu=vfp -mfloat-abi=softfp fcpu.o -o FCPU -L./

则运行后发现,所需要时间几乎减小了一半。 说明还是非常有效果的。

关于-mfpu -mfloat-abi讲解:见附录2。

另外,如何才能在直观的检查出是否使用VFP呢?

可以通过察看编译出的ASM程序得到结论。

#arm-hisiv200-linux-objdump -d fcpu.o

00000000 :
0: e52db004 push {fp} ; (str fp, [sp, #-4]!)
4: e28db000 add fp, sp, #0
8: e24dd00c sub sp, sp, #12
c: e3a03000 mov r3, #0
10: e50b300c str r3, [fp, #-12]
14: e3a03000 mov r3, #0
18: e50b3008 str r3, [fp, #-8]
1c: e3a03000 mov r3, #0
20: e50b3008 str r3, [fp, #-8]
24: ea000017 b 88
28: e3a03000 mov r3, #0
2c: e50b300c str r3, [fp, #-12]
30: ea00000d b 6c
34: e51b200c ldr r2, [fp, #-12]
38: e59f3064 ldr r3, [pc, #100] ; a4
3c: e0831102 add r1, r3, r2, lsl #2
40: ed917a00vldr s14, [r1]
44: e51b200c ldr r2, [fp, #-12]
48: e59f3058 ldr r3, [pc, #88] ; a8
4c: e0831102 add r1, r3, r2, lsl #2
50: edd17a00vldr s15, [r1]
54: ee777a27vadd.f32 s15, s14, s15
58: e59f304c ldr r3, [pc, #76] ; ac
5c: edc37a00vstr s15, [r3]
60: e51b300c ldr r3, [fp, #-12]
64: e2833001 add r3, r3, #1
68: e50b300c str r3, [fp, #-12]
6c: e51b200c ldr r2, [fp, #-12]
70: e59f3038 ldr r3, [pc, #56] ; b0
74: e1520003 cmp r2, r3
78: daffffed ble 34
7c: e51b3008 ldr r3, [fp, #-8]
80: e2833001 add r3, r3, #1
84: e50b3008 str r3, [fp, #-8]
88: e51b2008 ldr r2, [fp, #-8]
8c: e59f301c ldr r3, [pc, #28] ; b0
90: e1520003 cmp r2, r3
94: daffffe3 ble 28
98: e28bd000 add sp, fp, #0
9c: e49db004 pop {fp} ; (ldr fp, [sp], #4)
a0: e12fff1e bx lr

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top