微波功率器件及其材料的发展和应用前景
时间:02-18
来源:《材料导报》
点击:
3.1 材料的选取及特性
对于HEMT功率器件,比较成熟的是基于AlGaAs/GaAs的器件。InPHEMT已成为毫米波高端应用的支柱产品,器件的fT、fmax分别达340GHz和600GHz,代表着三端器件的最高水平。目前最吸引人的材料是AlGaN/GaN,它比前者有更好的微波功率特性,如图2所示。GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件的新型半导体材料,并与SiC、金刚石等半导体材料一起被誉为是继第一代Ge、Si半导休材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在高温大功率器件和高频微波器件应用方面有着广阔的前景。图3示出了GaN电子器件的性能与GaAs和SiC MESFET的比较,从图中可以很好地看到GaN基电子器件具有很好的应用前景。GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ-V族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个味胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。
GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n型,最好的样品的电子浓度约为4×10/cm3。一般情况下所制备的P型样品,都是高补偿的。很多研究小组都从事过这方面的研究工作,其中中村报道了GaN在室温和液氮温度下最高迁移率数据分别为μn=600cm2/v·s μn=1 500cm2/v·s,相应的载流子浓度为n=4×1016cm3。和n=8×1015cm3。近年报道的MOCVD沉积GaN层的电子浓度数值为4×101616cm3、<1016cm3;等离子激活MBE的结果为8×1017cm3、<1017cm3。未掺杂载流子浓度可控制在1014~1020cm3范围。另外,通过P型掺杂工艺和Mg的低能电子束辐照或热退火处理,已能将掺杂浓度控制在1011~1020cm3范围。
对于HEMT器件,要求材料是具有宽禁带、高熔点、高击穿电场的半导体材料,并能有很好的晶格匹配和小的热膨胀失配系数,这一点是非常重要的。
3.2 器件的设计
在设计上,衬底材料多采用半绝缘SiC或蓝宝石,但考虑功率器件的散热问题,SiC衬底更具优势。在晶格匹配上可增加一层A1N缓冲层;为了降低有源层的杂质散射则可增加一层低掺杂的缓冲层。另外需考虑n-AlxGa1-xN有源层厚度,载流子的浓度以及在AlxGa1-xN中Al的组分,空间隔离层的厚度,I-GaN有源层的载流子浓度,2DEG浓度及电子迁移率。在结构因素中主要考虑栅长、栅宽、源栅间距和漏栅间距等,其次是接触,主要包括源漏欧姆接触金属及其接触性能和栅肖特基接触金属及其与AIGaN/GaN接触特性,目前所用的接触金属主要是Au/Pt/A1/Ti多层金属和Ti/A1 A1GaN。在对其参数的优化中与MESFET一样,要减小栅长L,增大栅宽WD。通常器件都以单位栅宽衡量,这样减小栅长就是器件参数优化的关键。此外还要在工艺允许的条件下最大限度地减小栅源和栅漏间距以减小Rg和RD。目前已经报道了6.8W、10GHz A1GaN/GaN HEMT(栅长0.45μm、fT=28GHz、fmax=114GHz、Igd=0.680A/mm、gm=200ms/mm)。现在对HEMT器件有了很多新的结构,对器件性能也做出了很大的改进,这些改进的器件有如PHEMT、InPHEMT、
MOSHFET、DHFET等。目前,用HEMT制作的多级低噪声放大器和功率放大器已广泛用于卫星接收系统、电子系统及雷达系统。
4 国内现状及与国外差距、未来展望和总结
我国在GaAs MESFET的研制方面起步较早,经过十几年的努力,目前所达到的水平为C波段8W、15GHz 1W、18GHz 1W,并已商业化。而HBT和HEMT器件及其材料的研制方面起步较早,且由于设备条件差,所以器件性能也较差,大多数的器件只是处于试验阶段。目前,国家各重点实验室已成功研制出高性能的HBT和HEMT,填补了我国在这方面的空缺,只是还没能够形成产业化。
经过30多年的研制和发展,我国在半导体微波器件领域取得了很大的成绩,但与国外先进水平相比,仍然存在相当大的差距。对SiC晶元的制备我国尚为空缺,实验的材料均来自于美国的Cree公司,而GaN器件也刚刚起步,其工艺正在探索研究中,主要是由于受AlGaN/GaN 2DEG材料的来源限制。器件的研制和生产方面与国外的差距是多方面的,归纳起来包括以下几方面:
(1)投资强度不够。半导体制造工艺需要的设备大都要求先进的现代化设备,需要投人相当大的资金,由于我国的国力的原因,在投资方面跟不上美、日及西欧等国家。同时由于我国的基础工业的落后也导致了半导体产业的落后。
(2)材料研究落后。材料是器件的重要基础,材料的特性直接影响器件的性能参数。广泛掌握材料特性和对材料质量全面了解是器件成功的关键。虽然我国进口了先进的MBE、MOCVD设备,但材料生长技术仍有待提高。
(3)工艺设备的落后。由于半导体设备的投资相当大,而我国的大多数设备都靠从国外进口,主要是Si工艺生产线,而Si材料已不能满足未来对微波功率器件的要求,新材料的制备需要新的生产线及新的工艺。
未来器件的发展会集中在新材料、新工艺、新结构、互连技术等方面,而新材料则是重点。由于对器件的设计从"掺杂二程"转入"能带工程",因此对半导体材料需要革命性的革新,而这正是目前器件及IC技术突破的瓶颈。对于微波功率器件,需要找到宽禁带、高热导率、高电子迁移率、高的击穿强度、低介电常数的材料,同时 由于异质结的应用,必然会有晶格失配现象,故还需要有最小的晶格失配系数。
由于SiGe与Si工艺的兼容性,我国应首先在SiGe合金的制备及SiGe/Si异质结特性的研制和HBT结构的研制上取得突破,这可利用现成的Si工艺生产线实现产业化,从而实现第一代材料与第二代材料的平稳过渡。在其他新型材料(SiC、GaN、InP等)的研制和开发方面可采取开发与引进并行的策略逐步推进产业化进程,追赶国外先进水平。
化合物半导体器件中最有代表性、最能完美地显示异质结结构特点的超高速器件是高电子迁移率晶体管(HEMT)和异质结双极晶体管(HBT)。HEMT不仅可获得超高频、超高速,还具有低的高频噪声。HEMT是平面结构,而HBT是非平面结构,工艺上比HEMT难度大,但可获得高的输出功率。对微波功率器件的研究除了要寻找更好的半导体材料和对材料特性进行改进外,还要有十分完备的工艺支持。
对于HEMT功率器件,比较成熟的是基于AlGaAs/GaAs的器件。InPHEMT已成为毫米波高端应用的支柱产品,器件的fT、fmax分别达340GHz和600GHz,代表着三端器件的最高水平。目前最吸引人的材料是AlGaN/GaN,它比前者有更好的微波功率特性,如图2所示。GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件的新型半导体材料,并与SiC、金刚石等半导体材料一起被誉为是继第一代Ge、Si半导休材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在高温大功率器件和高频微波器件应用方面有着广阔的前景。图3示出了GaN电子器件的性能与GaAs和SiC MESFET的比较,从图中可以很好地看到GaN基电子器件具有很好的应用前景。GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ-V族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个味胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。
GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n型,最好的样品的电子浓度约为4×10/cm3。一般情况下所制备的P型样品,都是高补偿的。很多研究小组都从事过这方面的研究工作,其中中村报道了GaN在室温和液氮温度下最高迁移率数据分别为μn=600cm2/v·s μn=1 500cm2/v·s,相应的载流子浓度为n=4×1016cm3。和n=8×1015cm3。近年报道的MOCVD沉积GaN层的电子浓度数值为4×101616cm3、<1016cm3;等离子激活MBE的结果为8×1017cm3、<1017cm3。未掺杂载流子浓度可控制在1014~1020cm3范围。另外,通过P型掺杂工艺和Mg的低能电子束辐照或热退火处理,已能将掺杂浓度控制在1011~1020cm3范围。
对于HEMT器件,要求材料是具有宽禁带、高熔点、高击穿电场的半导体材料,并能有很好的晶格匹配和小的热膨胀失配系数,这一点是非常重要的。
3.2 器件的设计
在设计上,衬底材料多采用半绝缘SiC或蓝宝石,但考虑功率器件的散热问题,SiC衬底更具优势。在晶格匹配上可增加一层A1N缓冲层;为了降低有源层的杂质散射则可增加一层低掺杂的缓冲层。另外需考虑n-AlxGa1-xN有源层厚度,载流子的浓度以及在AlxGa1-xN中Al的组分,空间隔离层的厚度,I-GaN有源层的载流子浓度,2DEG浓度及电子迁移率。在结构因素中主要考虑栅长、栅宽、源栅间距和漏栅间距等,其次是接触,主要包括源漏欧姆接触金属及其接触性能和栅肖特基接触金属及其与AIGaN/GaN接触特性,目前所用的接触金属主要是Au/Pt/A1/Ti多层金属和Ti/A1 A1GaN。在对其参数的优化中与MESFET一样,要减小栅长L,增大栅宽WD。通常器件都以单位栅宽衡量,这样减小栅长就是器件参数优化的关键。此外还要在工艺允许的条件下最大限度地减小栅源和栅漏间距以减小Rg和RD。目前已经报道了6.8W、10GHz A1GaN/GaN HEMT(栅长0.45μm、fT=28GHz、fmax=114GHz、Igd=0.680A/mm、gm=200ms/mm)。现在对HEMT器件有了很多新的结构,对器件性能也做出了很大的改进,这些改进的器件有如PHEMT、InPHEMT、
MOSHFET、DHFET等。目前,用HEMT制作的多级低噪声放大器和功率放大器已广泛用于卫星接收系统、电子系统及雷达系统。
4 国内现状及与国外差距、未来展望和总结
我国在GaAs MESFET的研制方面起步较早,经过十几年的努力,目前所达到的水平为C波段8W、15GHz 1W、18GHz 1W,并已商业化。而HBT和HEMT器件及其材料的研制方面起步较早,且由于设备条件差,所以器件性能也较差,大多数的器件只是处于试验阶段。目前,国家各重点实验室已成功研制出高性能的HBT和HEMT,填补了我国在这方面的空缺,只是还没能够形成产业化。
经过30多年的研制和发展,我国在半导体微波器件领域取得了很大的成绩,但与国外先进水平相比,仍然存在相当大的差距。对SiC晶元的制备我国尚为空缺,实验的材料均来自于美国的Cree公司,而GaN器件也刚刚起步,其工艺正在探索研究中,主要是由于受AlGaN/GaN 2DEG材料的来源限制。器件的研制和生产方面与国外的差距是多方面的,归纳起来包括以下几方面:
(1)投资强度不够。半导体制造工艺需要的设备大都要求先进的现代化设备,需要投人相当大的资金,由于我国的国力的原因,在投资方面跟不上美、日及西欧等国家。同时由于我国的基础工业的落后也导致了半导体产业的落后。
(2)材料研究落后。材料是器件的重要基础,材料的特性直接影响器件的性能参数。广泛掌握材料特性和对材料质量全面了解是器件成功的关键。虽然我国进口了先进的MBE、MOCVD设备,但材料生长技术仍有待提高。
(3)工艺设备的落后。由于半导体设备的投资相当大,而我国的大多数设备都靠从国外进口,主要是Si工艺生产线,而Si材料已不能满足未来对微波功率器件的要求,新材料的制备需要新的生产线及新的工艺。
未来器件的发展会集中在新材料、新工艺、新结构、互连技术等方面,而新材料则是重点。由于对器件的设计从"掺杂二程"转入"能带工程",因此对半导体材料需要革命性的革新,而这正是目前器件及IC技术突破的瓶颈。对于微波功率器件,需要找到宽禁带、高热导率、高电子迁移率、高的击穿强度、低介电常数的材料,同时 由于异质结的应用,必然会有晶格失配现象,故还需要有最小的晶格失配系数。
由于SiGe与Si工艺的兼容性,我国应首先在SiGe合金的制备及SiGe/Si异质结特性的研制和HBT结构的研制上取得突破,这可利用现成的Si工艺生产线实现产业化,从而实现第一代材料与第二代材料的平稳过渡。在其他新型材料(SiC、GaN、InP等)的研制和开发方面可采取开发与引进并行的策略逐步推进产业化进程,追赶国外先进水平。
化合物半导体器件中最有代表性、最能完美地显示异质结结构特点的超高速器件是高电子迁移率晶体管(HEMT)和异质结双极晶体管(HBT)。HEMT不仅可获得超高频、超高速,还具有低的高频噪声。HEMT是平面结构,而HBT是非平面结构,工艺上比HEMT难度大,但可获得高的输出功率。对微波功率器件的研究除了要寻找更好的半导体材料和对材料特性进行改进外,还要有十分完备的工艺支持。
