微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > Cortex-M3学习日志(五)-- -- DAC实验

Cortex-M3学习日志(五)-- -- DAC实验

时间:11-21 来源:互联网 点击:
终于逮了个忙里偷闲的机会,就再学一下LPC1768的外围功能吧,循序渐进是学习的基本规则,也许LPC1768的DAC与8位单片机16位单片机里面集成的DAC操作类似,但是既然这是懒猫的学习日志,就顺便把DAC再好好复习一下了,或许能品出个什么味来^_^DAC是Digital to Analog Converter的缩写,中文名就是数模转换器,D/A转换器一般由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压等几部分组成。如下图所示:

图1-1 DAC原理框图

数字量以串行或并行方式输入,存储于数码寄存器中,数码寄存器输出的名位数码分别控制对应的模拟开关,使数码为1的位在位权网络上产生与其值成正比的电流值或电压值,再由求和电路将各权值相加,即得到数字量对应的模拟量。按解码网络结构不同可以将DAC转换器分成T型电阻网络D/A转换器、倒T型电阻网络D/A转换器、权电流D/A转换器、权电阻网络转换器。

1、T型电阻网络D/A转换器,其简单模型如下图所示:

图1-2 T型电阻网络D/A转换器模型

2、倒T型电阻网络D/A转换器简易模型

图1-3倒T型电阻网络D/A转换器

3、权电流D/A转换器简易模型如下图所示:

图1-4权电流D/A转换器简易模型

4、权电阻网络转换器简易模型如下图所示:

1-5权电阻网络转换器简易模型

按模拟电子开关的电路的不同,也可以将D/A转换器分为CMOS开关型D/A转换器(速度要求不高),双极型D/A转换器。而双极型D/A转换器双可以划分为电流开关型(速度要求较高)与ECL电流开关型(转换速度更高)两种。如果对欧姆定律不陌生的话,我想上面各个模型是如何输出电压的应该就可以理解了,在这里就不总结公式了,因为这只是模型,对应,实际电路与模型是有所出入的,在实际应用中要着重关注一下以下几个参数:

1、分辨率

D/A转换器的分辨率用最小分辨电压VLSB与满量程输出电压VFSV的比值来表示:


从上式可以看出D/A转换器的分辨率只与输入二进制数的位数n有关,因此大部分情况下我们直接把n做为分辨率如8位,10位,12位等,由此我们也可以知道分辨率值越小,分辨能力越高。

2、转换精度

在D/A转换器中,一般用转换误差来描述转换精度。DAC转换误差是指实际输出模拟电压值与理想值的最大偏差。转换误差是一个综合性的静态指标,主要由三部分构成:

1)非线性误差:一般是由于模拟电子开关的导通电阻和导通压降及R、2R电阻值的偏差引起。

2)漂移误差:一般是由于运算放大器的零点漂移引起。

3)增益误差:一般是由于参考电压偏离标准值、运放增益不稳定引起。

3、转换速度

转换速度一般由建立时间决定,从输入由全0突变全1起,到输出电压稳定(最大输出电压正负二分之一最小输出电压)止,称为DAC转换时间。它是DAC最大响应时间。例如,DAC 5G7520响应时间不大于500ns。

除了以上三个常见的指标D/A转换器的指标还包括电源抑制比、功率消耗、温度系数以及输入高、低逻辑电平的数值等技术指标。关于D/A的应用,应该说在电子系统中应用相当广泛,除了在微机系统中将数字量转换为模拟量典型应用之外,还常用于波形生成,名种数字式的或编程应用等。

好了,关于D/A转换器的知识暂时总结到这,更深入的知道还需要翻一下模电,信号与线性系统(好像里面有奈奎斯特定理,与采样有关),微电子,放大器等方面的书籍。下面简单总结一下LPC1768内部集成的D/A转换器。LPC1768内部集成的是10位模数转换器,它是电阻串联结构的,并且带有缓冲输出,最大输出频率为1MHz。电阻串联结构模型如下图所示:

1-6电阻串联结构

涉及到D/A的引脚主要有DAC输出脚P0.26,参考电压引脚,用来给D/A转换器提供参考电压,模拟电源与数字电源VDD/VSS,这个两个电源要分开提供,再不使用DAC时也要将这两个引脚连接到电源,不能悬空,不然系统会不稳定。

DAC的配置也很简单,首先就是将P0.26设置为DAC模式,再一个就是配置DAC控制寄存器DACDR。DAC的控制寄存器DACDR的6-15位是DAC的输出电压数字值,这个数字决定了要输出的电压大小,DAC输出电压的计算方法是:


公式中VDAC即指AC的控制寄存器DACDR的6-15位的值,VREF指的是参考电压,在这次实验电路中用的是3.3V。LPC1768的DAC功能还有DAM中断和定时控制功能,它采用又缓冲方式输出。在这里简单总结一下DAM模式,所谓的DAM模式也就是Direct Memory Access,汉语的意思就是直接内存访问,是一种不经过CPU而直接从内存存取数据的数据交换模式。在DMA模式下,CPU只须向DMA控制器下达指令,让DMA控制器来处理数据的传送,数据传送完毕再把信息反馈给CPU,这样就很大程度上减轻了CPU资源占有率

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top