微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > avr-gcc中关于delay延时函数的应用修改版

avr-gcc中关于delay延时函数的应用修改版

时间:11-23 来源:互联网 点击:
在51中我们的延时函数都是自己编写的,无论是在汇编中还是在C言语中。虽然有模板,有时还是有点烦。呵呵。不过在应用avr 单片机的时候我们就有福了。因为avr-gcc 提供给我们很方便的delay 延时函数, 只有在源文件包含:

#i nclude
就可以使用了。这个头文件定义了两个级别的延时函数分别是:
void_delay_us (double __us) ;//微秒级
void_delay_ms (double __ms);//毫秒级

不过不可以高兴的太早,因为要在你的avr-gcc中正确使用它们是有条件的,下面我将慢慢道来。

这个参数和 Makefile 中的 F_CPU 值有关,Makefile 所定义的的F_CPU 变量的值会传递给编译器。你如果用AVR_studio 4.1X来编辑和调试,用内嵌AVR-GCC的进行编译,并且让AVR_studio 帮你自动生成Makefile 的话,那你可以在:
Project -> Configuration Options -> Gerneral -> Frequency 如下图:


写下你的F_CPU的值,F_CPU这个值表示你的AVR单片机的工作频率。单位是 Hz ,不是 MHZ,不要写错。如 7.3728M 则 F_CPU = 7372800
你会发现在"delay.h" 头文件中有这个样的一个定义如下:
#ifndef F_CPU
# warning "F_CPU not defined for "
# define F_CPU 1000000UL// 1MHz
#endif

这是为了在你没有定义F_CPU这个变量(包括空),或是AVR_studio Frequency没有给值的时候,提供一个默认的 1MHz频率值。让编译器编译时不至于出错。

下面是这两个函数的实体:
void _delay_us(double __us)//微秒
{
uint8_t __ticks;
double __tmp = ((F_CPU) / 3e6) * __us; // 3e6 是因为调用的_delay_loop_1()是三条指令的
if (__tmp < 1.0)
__ticks = 1;
else if (__tmp > 255)
__ticks = 0;
else
__ticks = (uint8_t)__tmp;
_delay_loop_1(__ticks);
}

void _delay_ms(double __ms) // 毫秒
{
uint16_t __ticks;
double __tmp = ((F_CPU) / 4e3) * __ms;// 4e3 是因为调用的_delay_loop_2()是四条指令的

if (__tmp < 1.0)
__ticks = 1;
else if (__tmp > 65535)
__ticks = 0;
else
__ticks = (uint16_t)__tmp;
_delay_loop_2(__ticks);
}

你会发现他们都分别调用了_delay_loop_1(); 和_delay_loop_2(); 这两个函数
而这两个函数又如下所示:
void_delay_loop_1(uint8_t __count)
{
__asm__ volatile (
"1: dec %0" ""
"brne 1b"
: "=r" (__count)
: "0" (__count)
);
}

从其函数注释里面可以了解到,该函数用来延迟3个晶振时钟周期,不包括程序调用和退出该函数所花费的时间。该函数的形参__count是一个8位的变量,由此,我们就可以根据系统采用的晶振频率算出该函数最大的延迟时间了:
1MHz时:MAX_DELAY_TIME=(1/1000000)*3*256=0.000768S=768uS
8MHz时:MAX_DELAY_TIME=(1/8000000)*3*256=0.000096S=96uS
............
F_CPUMAX_DELAY_TIME=(1/F_CPU)*3*256
依此类推。

void_delay_loop_2(uint16_t __count)
{
__asm__ volatile (
"1: sbiw %0,1" ""
"brne 1b"
: "=w" (__count)
: "0" (__count)
);
}

该函数延时4个晶振周期,形参是一个16位的变量,同样我们也可以算出该函数最大的延迟时间:
1MHz时:MAX_DELAY_TIME=(1/1000000)*4*65535=0.26214S=262.1mS
8MHz时:MAX_DELAY_TIME=(1/8000000)*4*65535=0.03277S=32.8mS
............
F_CPUMAX_DELAY_TIME=(1/F_CPU)*4*65535
依此类推。

重要提示:_delay_loop_1(0)、_delay_loop_1(256)延时是一样的!!
同理,_delay_loop_2(0)、_delay_loop_2(65536)延时也是一样的!!这些函数的延时都是最长的延时。

这两个函数都是avr-gcc 的 inline汇编格式写的,具体的语法规则我就不多说了。可以参考avr-libc。不过这两个函数很简单,很容易明白。一个是字节递减,一个是字递减。如果你认真看上面几个函数,你就会发现要正确使用它们是有如下条件的:
1. 首先,你要正确定义你的 F_CPU 的值,也就是你的AVR单片机实际的频率。否则延时不准。(延时只在数字上不准确,具体可以计算)
2. 你在编译时一定要打开优化,Makefile中OPT 不要选 0 ,如果AVR_studio 不要选O0 。
3. 你在使用这两个delay()时,传递给两个函数的实参要使用常量,不要使用变量。
4. 设置的时间参数__ms , __us 是有范围的,不要超过范围。__ms:1 - [262.14 ms / (F_CPU/1e6) ],__us:1- [768 us / (F_CPU/1e6)] 。 [...]表取整数部分.(此处结论错误?)。

__us的最大值应该是768us(1M频率下)MAX_VALUE=256*3/F_CPU s,最小值3个时钟周期MIN_VALUE=1*3/F_CPU s;
,__ms最大值MAX_VALUE=65536*4/F_CPU s,MIN_VALUE=1*4/F_CPU s;

只有具备了上面的条件你才可以正确使用延时函数 _delay_us () 和 _delay_ms () 。对于第三个条件,为什么要选用常量,还有第二个条件为什么要打开优化选项。这是为了让编译器在编译的时候就把延时的值计算好,而不是把它编译到程序中,在运行时才进行计算,那样的话,一是会增加代码的长度,还会使你的延时程序的延时时间加长,或是变得不可预料。产生时序的错误。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top