问题:为什么用EAX寄存器保存函数返回值?
实际上IA32并没有规定用哪个寄存器来保存返回值。但如果反汇编Solaris/Linux的二进制文件,就会发现,都用EAX保存函数返回值。这不是偶然现象,是操作系统的ABI(Application Binary Interface)来决定的。Solaris/Linux操作系统的ABI就是Sytem V ABI。
概念:SFP (Stack Frame Pointer) 栈框架指针
正确理解SFP必须了解:
IA32 的栈的概念
CPU 中32位寄存器ESP/EBP的作用
PUSH/POP 指令是如何影响栈的
CALL/RET/LEAVE 等指令是如何影响栈的
如我们所知:
1)IA32的栈是用来存放临时数据,而且是LIFO,即后进先出的。栈的增长方向是从高地址向低地址增长,按字节为单位编址。
2) EBP是栈基址的指针,永远指向栈底(高地址),ESP是栈指针,永远指向栈顶(低地址)。
3) PUSH一个long型数据时,以字节为单位将数据压入栈,从高到低按字节依次将数据存入ESP-1、ESP-2、ESP-3、ESP-4的地址单元。
4) POP一个long型数据,过程与PUSH相反,依次将ESP-4、ESP-3、ESP-2、ESP-1从栈内弹出,放入一个32位寄存器。
5) CALL指令用来调用一个函数或过程,此时,下一条指令地址会被压入堆栈,以备返回时能恢复执行下条指令。
6) RET指令用来从一个函数或过程返回,之前CALL保存的下条指令地址会从栈内弹出到EIP寄存器中,程序转到CALL之前下条指令处执行
7) ENTER是建立当前函数的栈框架,即相当于以下两条指令:
pushl %ebp
movl %esp,%ebp
8) LEAVE是释放当前函数或者过程的栈框架,即相当于以下两条指令:
movl ebp esp
popl ebp
如果反汇编一个函数,很多时候会在函数进入和返回处,发现有类似如下形式的汇编语句:
pushl %ebp ; ebp寄存器内容压栈,即保存main函数的上级调用函数的栈基地址
movl %esp,%ebp ; esp值赋给ebp,设置 main函数的栈基址
........... ; 以上两条指令相当于 enter 0,0
...........
leave ; 将ebp值赋给esp,pop先前栈内的上级函数栈的基地址给ebp,恢复原栈基址
ret ; main函数返回,回到上级调用
这些语句就是用来创建和释放一个函数或者过程的栈框架的。
原来编译器会自动在函数入口和出口处插入创建和释放栈框架的语句。
函数被调用时:
1) EIP/EBP成为新函数栈的边界
函数被调用时,返回时的EIP首先被压入堆栈;创建栈框架时,上级函数栈的EBP被压入堆栈,与EIP一道行成新函数栈框架的边界
2) EBP成为栈框架指针SFP,用来指示新函数栈的边界
栈框架建立后,EBP指向的栈的内容就是上一级函数栈的EBP,可以想象,通过EBP就可以把层层调用函数的栈都回朔遍历一遍,调试器就是利用这个特性实现 backtrace功能的
3) ESP总是作为栈指针指向栈顶,用来分配栈空间
栈分配空间给函数局部变量时的语句通常就是给ESP减去一个常数值,例如,分配一个整型数据就是 ESP-4
4) 函数的参数传递和局部变量访问可以通过SFP即EBP来实现
由于栈框架指针永远指向当前函数的栈基地址,参数和局部变量访问通常为如下形式:
+8+xx(%ebp) ; 函数入口参数的的访问
-xx(%ebp) ; 函数局部变量访问
假如函数A调用函数B,函数B调用函数C ,则函数栈框架及调用关系如下图所示:
+-------------------------+----> 高地址
| EIP (上级函数返回地址) |
+-------------------------+
+--> | EBP (上级函数的EBP) | --+ <------当前函数A的EBP (即SFP框架指针)
| +-------------------------+ +-->偏移量A
| | Local Variables | |
| | .......... | --+ <------ESP指向函数A新分配的局部变量,局部变量可以通过A的ebp-偏移量A访问
| f +-------------------------+
| r | Arg n(函数B的第n个参数) |
| a +-------------------------+
| m | Arg .(函数B的第.个参数) |
| e +-------------------------+
| | Arg 1(函数B的第1个参数) |
| o +-------------------------+
| f | Arg 0(函数B的第0个参数) | --+ <------ B函数的参数可以由B的ebp+偏移量B访问
| +-------------------------+ +--> 偏移量B
| A | EIP (A函数的返回地址) | |
| +-------------------------+ --+
+--- | EBP (A函数的EBP) |<--+ <------ 当前函数B的EBP (即SFP框架指针)
+-------------------------+ |
| Local Variables | |
| .......... | | <------ ESP指向函数B新分配的局部变量
+-------------------------+ |
| Arg n(函数C的第n个参数) | |
+-------------------------+ |
| Arg .(函数C的第.个参数) | |
+-------------------------+ +--> frame of B
| Arg 1(函数C的第1个参数) | |
+-------------------------+ |
| Arg 0(函数C的第0个参数) | |
+-------------------------+ |
| EIP (B函数的返回地址) | |
+-------------------------+ |
+--> | EBP (B函数的EBP) | --+ <------ 当前函数C的EBP (即SFP框架指针)
| +-------------------------+
| | Local Variables |
| | .......... | <------ ESP指向函数C新分配的局部变量
| +-------------------------+----> 低地址
frame of C
图 1-1
再分析test1反汇编结果中剩余部分语句的含义:
# mdb test1
Loading modules: [ libc.so.1 ]
> main::dis ; 反汇编main函数
main: pushl %ebp
main+1: movl %esp,%ebp ; 创建Stack Frame(栈框架)
main+3: subl $8,%esp ; 通过ESP-8来分配8字节堆栈空间
main+6: andl $0xf0,%esp ; 使栈地址16字节对齐
main+9: movl $0,%eax ; 无意义
main+0xe: subl %eax,%esp ; 无意义
main+0x10: movl $0,%eax ; 设置main函数返回值
main+0x15: leave ; 撤销Stack Frame(栈框架)
main+0x16: ret ; main 函数返回
>
以下两句似乎是没有意义的,果真是这样吗?
movl $0,%eax
subl %eax,%esp
用gcc的O2级优化来重新编译test1.c:
# gcc -O2 test1.c -o test1
# mdb test1
> main::dis
main: pushl %ebp
main+1: movl %esp,%ebp
main+3: subl $8,%esp
main+6: andl $0xf0,%esp
main+9: xorl %eax,%eax ; 设置main返回值,使用xorl