微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > STM32开发板学习日记-[3] TIM定时器输出比较

STM32开发板学习日记-[3] TIM定时器输出比较

时间:11-26 来源:互联网 点击:
使用Timer进行周期定时

在STM32的某些应用中,用户有周期性执行某些程序的要求,使用定时器可以产生固定的时间周期,满足 这样的需求。

STM32相关特征:
STM32高级定时器TIM1、TIM8,通用定时器TIM2、TIM3、TIM4、TIM5;
定时器最大时钟72MHz,配合预分频,提供灵活的时钟周期;
每个TIM有4个独立捕获/比较通道,DMA/中断功能;
通道工作在输出比较定时模式,一个TIM至多可以提供4个不同的定时周期。

原理
TIM某输出/捕获通道工作在输出比较定时模式
计数器计数至比较值时产生中断,在中断中刷新捕获比较寄存器,这样在相同时间间隔后可产生下一次中断

TIM2时钟设置为36MHz,预分频设置为2,使用输出比较-翻转模式(Output Compare Toggle Mode)。

TIM2计数器时钟可表达为:TIM2 counter clock = TIMxCLK / (Prescaler +1) = 12 MHz

设置TIM2_CCR1寄存器值为32768,则CC1更新频率为TIM2计数器时钟频率除以CCR1寄存器值,为366.2 Hz。因此,TIM2通道1可产生一个频率为183.1 Hz的周期信号。

同理,根据寄存器TIM2_CCR2 、TIM2_CCR3和 TIM2_CCR4的值,TIM2通道2可产生一个频率为366.3 Hz的周期信号;TIM2通道3可产生一个频率为732.4 Hz的周期信号;TIM2通道4可产生一个频率为1464.8 Hz的周期信号。

可以通过示波器观察各路输出。

#include "stm32f10x_lib.h"



TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;
TIM_OCInitTypeDefTIM_OCInitStructure;
vu16 CCR1_Val = 32768;
vu16 CCR2_Val = 16384;
vu16 CCR3_Val = 8192;
vu16 CCR4_Val = 4096;
ErrorStatus HSEStartUpStatus;

void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);

int main(void)
{
#ifdef DEBUG
debug();
#endif


RCC_Configuration();


NVIC_Configuration();


GPIO_Configuration();


TIM_TimeBaseStructure.TIM_Period = 65535;//这里必须是65535

TIM_TimeBaseStructure.TIM_Prescaler = 2;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);


TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;//管脚输出模式:翻转(TIM输出比较触发模式)

TIM_OCInitStructure.TIM_Channel = TIM_Channel_1;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;//翻转周期

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;//TIM输出比较极性低

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);//失能TIMx在CCR1上的预装载寄存器


TIM_OCInitStructure.TIM_Channel = TIM_Channel_2;
TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);


TIM_OCInitStructure.TIM_Channel = TIM_Channel_3;
TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);


TIM_OCInitStructure.TIM_Channel = TIM_Channel_4;
TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);


TIM_Cmd(TIM2, ENABLE);


TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

while (1)
{
}
}


void RCC_Configuration(void)
{

RCC_DeInit();


RCC_HSEConfig(RCC_HSE_ON);


HSEStartUpStatus = RCC_WaitForHSEStartUp();

if(HSEStartUpStatus == SUCCESS)
{

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);


FLASH_SetLatency(FLASH_Latency_2);


RCC_HCLKConfig(RCC_SYSCLK_Div1);


RCC_PCLK2Config(RCC_HCLK_Div1);


RCC_PCLK1Config(RCC_HCLK_Div4);


RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);


RCC_PLLCmd(ENABLE);


while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}


RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);


while(RCC_GetSYSCLKSource() != 0x08)
{
}
}


RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);


RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
}

void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;


GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

上一篇:arm之TFT
下一篇:TFT画出任意斜率的直线

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top