微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 解读旁瓣消隐技术在雷达中应用

解读旁瓣消隐技术在雷达中应用

时间:08-17 来源:互联网 点击:

采用。辅助通道包括幅相监测、旁瓣匿影等处理的通道。通用DSP 主要作通道校正处理,对校正系数、自适应对消权系数求解处理等内容。DBF 基本处理数学模型如式(1)

20170816043000285(1)

式中,X为多路阵元通道回波信号;C为通道校正系数;W为加权系数,一般系数对称且为实数;S为波束指向系数;B为DBF 合成以后的各波束数据。最后将旁瓣消隐通道和主通道一起进行合成后送到后续脉冲压缩处理单元。

4、目标显示雷达与SLB 兼容问题

在动目标显示(MTI) 雷达中,假定杂波抑制滤波器采用二次对消(即三脉冲对消),则MTI 杂波抑制滤波器输出信号可写为U=A-2B+C ;式中C为当前雷达发射脉冲周期某个距离单元的回波信号幅值,B为前一个雷达发射脉冲周期同一个距离单元的回波信号幅值,A为前二个雷达发射脉冲周期同一个距离单元的回波信号幅值。显然,只要这三个周期同一个距离单元的回波信号都到达,且幅值相等(即为固定杂波干扰信号),则经过MTI 杂波抑制滤波后,输出为零,即将固定杂波干扰抑制掉。如果在这三个周期中,正好某个周期的此距离单元出现旁瓣消隐脉冲,则雷达主接收通道被关闭,于是就丢掉一个周期的回波信号。这时非但不能抑制掉固定杂波干扰,而且还会有输出,即产生一个假目标。普通脉冲雷达探测和跟踪低空、超低空入侵的目标较为困难,这是雷达"四大对抗"中的一个重大课题。为此需要研制全相参雷达。对全相参雷达而言,其发射信号和本振信号均是由同一个频率综合器产生的,而信号之间保持着严格的相位关系,只有这样,才能保证全相参。旁瓣消隐是抗从副瓣进入干扰的有效技术,而MTI技术则是全相参MTI雷达抑制固定杂波干扰的有效技术。因此,要想同时使用,就必须解决二者的兼容问题。在进行旁瓣消隐与MTI 兼容设计时,必须解决两个问题:一是当产生旁瓣消隐脉冲时,应连续产生n+1 (n为对消次数)个周期的消隐脉冲,闭锁n+1个周期回波的输出。二是消隐脉冲出现时,对应的那个距离单元才被连续闭锁n+1个周期,其它距离单元不受影响。

5、结束语

旁瓣消隐系统防止从雷达天线副瓣进入的干扰信号效果明显,而且如果副天线的增益选择得当也不会降低主瓣检测目标的能力,但它并不能消隐主瓣进入的干扰信号。在存在噪声和波程差的情况下,只能消隐部分干扰信号,改善的效果可以由改善因子体现出来。信噪比和固定相移对改善因子有影响。旁瓣消隐技术无法对付连续波或噪声干扰,这时就需要采用旁瓣对消技术。雷达之所以具有很强的抗干扰和抗杂波的能力,是因为其天线具有很低的旁瓣电平且装有旁瓣消隐或旁瓣对消的附加通道以及对干扰源的跟踪可实现天线方向图自适应调零。由于相控阵天线由独立辐射单元或子阵列所组成,所以它在电子对抗环境下可得到最佳的自适应天线方向图。相控阵雷达的数字波束形成接收机是采用数字技术实现瞬时多波束及实时自适应处理的装置。它在形成瞬时多波束的同时,能对干扰源自适应调零并得到超高分辨率和超低旁瓣的性能,因而能非常有效地对付先进的综合性电子干扰。此外,相控阵雷达的波形和闭锁时间可以根据杂波环境要求进行调整。因此,相控阵无疑是一种极为优良的雷达反对抗体制。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top