射频电缆、双绞线与串扰
第一部分开始讨论接地问题:何时考虑接地,机箱材料如何影响接地,以及接地环路问题。第二部分讨论电源回路和I/O信号接地。第三部分谈到了板间接口信号、星形接地和屏蔽。第四部分谈到了安全地以及电线/电缆。
1.2.5 射频电缆
除了一些特殊应用外,比如高频天线馈线可能使用平衡线,射频信号传输用电缆几乎总是同轴电缆。同轴电缆的突出属性是信号沿着电缆传播产生的磁场被限制在电缆内部(图1.21),与外部环境的交互因此保持在最小程度。
图中文字从左至右:护套,屏蔽或外层导体,电介质,内部导体,磁场被限制在外层导体之内。
图1.21 同轴电缆
另外一个有用的属性是同轴电缆的特征阻抗很容易定义和保持。对射频应用来说这点很重要,因为在这些应用中电缆长度一般都会超过传输信号波长。1.3小节将讨论传输线的一般属性——其中同轴是一种特殊类型。通常在同轴参数规格中见到的参数有:
● 特征阻抗(Zo):通用标准是50Ω,这个值可以在机械属性和电路易用性方面取得很好的平衡。75Ω和93Ω标准常见于视频和数据系统。任何其它阻抗必须被认为是特殊类型阻抗。
● 电介质材料。电介质材料会影响到电缆的各种属性,包括Zo、衰减、电压处理、物理属性和温度范围。固体聚乙烯或聚乙烯是标准材料。蜂窝状聚乙烯的部分电介 质绝缘性能由空气间隙提供,因此可以提供较轻的重量和较小的衰减损耗,但比固体材料更容易产生物理变形。这两种材料的额定工作温度是85℃。聚四氟乙烯 (PTFE)材料适用于更高温度(200℃)和更低损耗的应用,但价格要贵得多。
● 导体材料。普遍用的是铜。有时也用电镀银,它能通过趋肤效应增强高频传导性,或将铜电镀到钢绞线上以增强强度。内部导体可以是单股或多股线。当电缆有柔韧 性要求时,最好使用多股线。外部导体一般是铜编带,同样也是为了柔韧性。编带覆盖程度影响高频衰减和屏蔽效果。对于不要求柔韧性的特殊应用来说,可以使用 坚硬的外部导体。
● 额定电压。较厚的电缆通常具有较高的额定电压和较小的衰减。你不能轻易地将额定电压与功率处理能力联系在一起,除非电缆与其特征阻抗相匹配。如果电缆不匹配,会产生电压驻波,进而在电缆沿线的一些特殊位置产生峰值电压,这个值比从功率/阻抗关系推导出的值要高。
● 衰减。电介质和导体的损耗特性导致衰减随频率和距离增加而增加,因此衰减数据一般提供离散频率点每10米的值,你可以从中找到你的工作频率点的衰减值。电缆损耗很容易让你抓狂,尤其是当你使用长电缆传输宽带宽信号、又忘了在末端放出额外几个dB的损耗余量时。
目前市场上的同轴电缆分成两种标准:针对RG/U(无线电政府,通用型)的美国MIL-C-17标准和针对UR-M(Uniradio)系列的英国BS 2316标准。国际标准是IEC 60096。表1.8给出了一些普通50Ω电缆的比较数据。
一句话警告:永远不要混淆带屏蔽层的音频电缆和射频同轴电缆。它们的编带和电介质材料有很大的区别,音频电缆的Zo是不确定的,高频时的衰减非常大。如果你试图用它来馈送射频信号,那么你在电缆末端是接收不到多少信号的!另一方面,射频同轴电缆可以用来承载音频信号。
1.2.6 双绞线
应该对双绞线给予特殊关照,因为它在减小磁性和电容干扰耦合方面特别有效方便。将两根线绞合在一起可以确保电容的均匀分布。到地的电容和到外部源的电容是平衡的。这意味着共模电容耦合也是平衡的,因此可以实现很高的共模抑制。
图1.22对双绞线和非双绞线(直线对)进行了比较,但需要注意的是,如果你的问题已经是共模电容耦合,那么将线绞起来是没有什么帮助的。要解决这个问题,你需要采用屏蔽技术。
图1.22:双绞线的优点。
图中文字从上至下:连续的半绞合可以抵消磁场感应,平衡的到地电容,双绞线,磁场感应不能被抵消,不平衡的到地电容,直线绞给方法在减少低频电磁耦合方面最有用,因为它能将磁环面积减小到几乎为零。每个半绞合都会反转感应方向,因此假设外部磁场是均匀的,那么两个连续的半绞合会抵消线缆与磁场的交互作用。
有效的环路耦合现在被减小到线缆对两端的小块面积上,加上由于磁场的不均匀性和线缆绞合的不规则性引起的少量残余交互。假设终端面积包含在磁场中,那么单位 长度内的绞合数量就不重要了:通常每英尺约8-16圈(每米26至50圈)。图1.23对22-AWG双绞线与间隔为0.032英寸的22-AWG并行线 的磁场衰减与频率关系进行了比较。
图1.23 双绞线的磁场衰减。(数据来源:R.B.Cowdell在1979年IEEE EMC专题论文集第183页发表的文章"探索双绞线的秘密")
射频电缆 相关文章:
- 解析同轴射频电缆和视频电缆的区别(02-07)
- 皱纹外导体制造对同轴射频电缆驻波的影响分析(01-01)
- 射频电缆及测试电缆组件的性能指标及通用设计准则(09-12)
- 关于射频电缆的选择(01-11)
- 解析同轴射频电缆中的奥秘(03-24)
- 实芯聚四氟乙烯绝缘半柔同轴射频电缆介绍(01-07)