Linux学习-等待队列
我就简要的分析分析等待队列的一些问题,就相当于自己的总结吧。边学驱动,边学内核,还是蛮有意思的。
1、等待队列的定义,包括两个,等待队列头,节点。
struct __wait_queue_head {
spinlock_t lock; /*自旋锁*/
struct list_head task_list; /*链表头*/
};
typedef struct __wait_queue_head wait_queue_head_t;
...
struct __wait_queue {
unsigned int flags;
#define WQ_FLAG_EXCLUSIVE 0x01
void *private;
wait_queue_func_t func;
struct list_head task_list;
};
/*关于等待队列的操作主要是初始化操作*/
#define DECLARE_WAIT_QUEUE_HEAD(name)
wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
/*就是初始化两个元素*/
#define __WAIT_QUEUE_HEAD_INITIALIZER(name) {
.lock = __SPIN_LOCK_UNLOCKED(name.lock),
.task_list = { &(name).task_list, &(name).task_list } }
#define init_waitqueue_head(q)
do {
static struct lock_class_key __key;
__init_waitqueue_head((q), &__key);
} while (0)
void __init_waitqueue_head(wait_queue_head_t *q, struct lock_class_key *key)
{
spin_lock_init(&q->lock);
lockdep_set_class(&q->lock, key);
INIT_LIST_HEAD(&q->task_list);
}
从上面的定义可知,实质上等待队列头很简单,只要就是一个链表头,而等待队列的节点主要包含了一个函数指针和对应的参数,以及链表。
我们在驱动过程中主要使用的函数主要包括wait_event(),wait_event_interruptible(),wait_event_killable(),以及唤醒过程中的wait_up(),wait_up_interruptible().
基本的流程就是:
#define wait_event(wq, condition)
do {
if (condition)
/*添加满足,则直接跳出*/
break;
/*负责进入等待队列*/
__wait_event(wq, condition);
} while (0)
#define __wait_event(wq, condition)
do {
/*定义新的等待队列节点*/
DEFINE_WAIT(__wait);
for (;;) {/*一个循环的过程,可能导致堵塞*/
/*将添加的节点添加到队列中,并改变进程的运行状态*/
prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE);
if (condition)/*如果条件合适了,就跳出当前的循环,也就是等待条件获得*/
break;
/*当前进程放弃CPU,进行调度其他的进程,这时的进程进入睡眠状态
也就是说在schedule中函数就不在继续执行,只有调用wake_up函数唤
醒当前的进程,才会退出schedule函数,然后继续执行下面的函数,也就是继续循环
真正的退出循环,只有当条件满足时,如果条件不满足,调用wake_up函数
仍然不会满足条件,只会再次调度,再次失去CPU,
根据上面的分析可知,只有上面的条件满足了,并调用
wake_up函数才能跳出当前的for循环。
*/
schedule();
}
/*完成等待*/
finish_wait(&wq, &__wait);
} while (0)
#define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
#define DEFINE_WAIT_FUNC(name, function)
wait_queue_t name = {
.private = current,
.func = function,
.task_list = LIST_HEAD_INIT((name).task_list),
}
void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
/*改变状态*/
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
/*如果链表是空,则将当前的这个节点添加进来,这样能避免wait被反复的添加,造成大量的浪费*/
if (list_empty(&wait->task_list))
__add_wait_queue(q, wait);
/*修改当前进程的状态*/
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
#define set_current_state(state_value)
set_mb(current->state, (state_value))
static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
{
/*就是将链表添加进来而已*/
list_add(&new->task_list, &head->task_list);
}
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__a
Linux学习等待队 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)
