PCB设计中铜箔对于电气性能的影响
引言
面向2020年及未来,移动通信技术和产业将迈入第五代移动通信(5G)的发展阶段,5G将满足人们对于超高数据传输速率、超高移动性等方面的需求,为了应对海量、高速的数据传输,具有较大带宽的毫米波频谱资源将在2019年后进一步开放。
随着未来可使用频率的升高,对于高频PCB设计的理念也在发生改变,例如高频PCB越来越多的由单、双面板向多层板结构转移,复杂的金属化过孔结构(任意层间互联)正在取代简单的金属化过孔或者非金属化过孔结构。
1、高频PCB设计中传输线形式
按照微波技术理论[1]对于传输线路的划分,TEM (Transverse Electromagnetic)传输线和波导都可以作为高频信号传输的载体,而TEM传输线结构中的微带线(Micro-strip line)、带状线(Strip-line)和波导结构中的基片集成波导(SIW, Substrate Integrated Waveguide)都被应用在高频PCB设计中。
在高频PCB设计中,就高频信号在不同传输线路中的衰减与铜箔之间的关系来讲,微带线和带状线受到铜箔的影响要远大于SIW结构中铜箔的影响(或者说SIW结构中介质的损耗对于整个传输线路插损的贡献率更大[2,3]),因而下文主要围绕铜箔在微带线和带状线结构中的相关问题展开。
2、趋肤效应(Skin Effect)
图1-1、微带线结构示意图
图1-2、带状线结构示意图
在微带线或带状线设计中,当高频信号在导线中传输时,大部分电磁波能量会被束缚在导线与屏蔽层(地)之间的介质层中,而趋肤效应会导致高频信号的传输聚集在导线表面的薄层,且越靠近导线表面,交变电流密度也越大。对于微带线而言,趋肤效应将出现在微带线与介质接触的位置(如图1-1红色所示位置),对于带状线而言,趋肤效应将出现在带状线的表面与介质接触的位置(如图1-2红色所示位置)。通过趋肤深度的计算公式,可以得出趋肤深度随频率变化的变化趋势(见图2)。
图2、趋肤深度与频率的关系
通过图2可以清晰的看出,趋肤深度随着频率的增加而显著降低,当频率为5GHz时,趋肤深度降至1um左右,而在毫米波频段(>26GHz),趋肤深度进一步降低至0.5um以下。从侧面说明了与介质接触的铜箔粗糙度对于产品的插入损耗有着十分重要影响。这里所指的铜箔粗糙度可以是铜箔与基材介质接触面(Treated side of copper foil)的粗糙度,也可以是指铜箔表面(Untreated side of copper foil)经过PCB制程后所产生的粗糙度,例如带状线设计中,蚀刻或压合前内层粗化所导致的铜箔表面(线条顶部和侧壁)的粗糙度。
3、高频设计中不同类型铜箔对电性能的影响
在高频线路板设计中,设计师选材时对于PCB板材的介电常数(Dk)和正切角损耗(Df)通常比较关注,对于铜箔的选择往往只关注铜箔的厚度,容易忽略了不同类型铜箔的粗糙度对于产品电气性能的影响。
接下来笔者从TACONIC公司可选的不同类型铜箔入手,就铜箔类型对电性能的影响进行介绍。
3.1、不同类型铜箔粗糙度情况
表1、不同类型铜箔粗糙度微观形貌一览表
通过对于不同类型铜箔与介质接触面的微观形貌SEM分析可见,不同类型的铜箔的粗糙度存在较大差异(本文以Rz ISO来表征粗糙程度),在微带线的设计中,铜箔与介质接触面的粗糙度将直接影响整个传输线路的插入损耗。
图3、传输线边缘残铜SEM照片
对于带状线的设计而言,除了要考虑铜箔Treated side的粗糙度之外,还需要考虑铜箔Untreated side以及线条侧壁的粗糙度,而这两方面粗糙度的大小与PCB板厂的加工工艺以及加工能力有较大的关系,需对底铜厚度选择、蚀刻药水或内层粗化药水等进行管控。否则,带状线表面的粗糙度过高,或者线条边缘的残铜(如图3)都会导致传输线路电性能指标的恶化,例如:插损、驻波、互调等。
3.2、不同类型铜箔对于插入损耗的影响
图4、TSM-DS3搭配不同类型铜箔的插入损耗对比(50ohm微带线)
在高频设计中,传输线路插入损耗的降低,对于提升产品增益与功率效有着积极的意义。本文以TACONIC低损耗材料TSM-DS3(Dk 3.0, Df: 0.0011@10GHz)为介质,搭配不同类型的铜箔,对50ohm微带线进行插入损耗的测试表明(如图3所示),随着频率的增加,选用ULP铜箔对于降低线路的插入损耗有着极大的帮助,在45GHz下测试的TSM-DS3搭配ULP铜箔的插损为-0.24dB/10mm,比同频段下搭配STD铜箔的插损低约77%。这不得不使我们考虑如何通过低损耗介质材料(例如TSM-DS3)搭配粗糙度尽可能低的铜
- 针对0.4毫米和0.5毫米晶圆级封装的PCB设计(07-28)
- 射频电路的PCB设计(12-04)
- 电子元件面对高功率电平(01-04)
- 射频板材选材和无源互调(01-05)
- AWR和Zuken发布PCB射频验证流程(01-30)
- 手机PCB可靠性的设计(04-23)