电容电感产生的相位差如何理解?
/dv(t)。
因为电流等于单位时间内电荷数的变化量,即i(t)=dQ(t)/dt,
综合上面两个公式得到:i(t)=C*dv(t)/dt,即电容电流与其上电压的变化率(对时间的导数)成正比,电压变化越快则电流越大。
小结
v(t)=L*di(t)/dt表明电流变化形成了电感的感应电压(电流不变则没有感应电压形成)。
i(t)=C*dv(t)/dt表明电压变化形成了电容的外部电流(实际是电荷量变化。电压不变则没有电容的外部电流形成)。
三、元件对信号相位的改变
首先要提醒,相位的概念是针对正弦信号而言的,直流信号、非周期变化信号等都没有相位的概念。
1. 电阻上的电压电流同相位
因为电阻上电压v(t)=R*i(t),若i(t)=sin(ωt+θ),则v(t)=R* sin(ωt+θ)。
所以,电阻上电压与电流同相位。
2. 电感上的电流落后电压90°相位
因为电感上感应电压v(t)=L*di(t)/dt,若i(t)=sin(ωt+θ),则v(t)=L*cos(ωt+θ)。
所以,电感上电流落后感应电压90°相位,或者说感应电压超前电流90°相位。
直观理解:设想一个电感与电阻串联充磁。从充磁过程看,充磁电流的变化引起磁链的变化,而磁链的变化又产生感应电动势和感应电流。根据楞次定律,感应电流方向与充磁电流相反,延缓了充磁电流的变化,使得充磁电流相位落后于感应电压。
3. 电容上的电流超前电压90°相位
因为电容上电流i(t)=C*dv(t)/dt,若v(t)=sin(ωt+θ),则i(t)=L*cos(ωt+θ)。
所以,电容上电流超前电压90°相位,或者说电压落后电流90°相位。
直观理解:设想一个电容与电阻串联充电。从充电过程看,总是先有流动电荷(即电流)的积累才有电容上的电压变化,即电流总是超前于电压,或者说电压总是落后与电流。下面的积分方程能体现这种直观性:
v(t)=(1/C)∫i(t)dt=(1/C)*∫dQ(t),即电荷变化的积累形成了电压,故dQ(t)相位超前v(t);而电荷积累的过程就是电流同步变化的过程,即i(t)与dQ(t)同相。因此i(t)相位超前于v(t)。
四、元件相位差的应用——RC文氏桥、LC谐振过程的理解
无论RC文氏桥,还是LC的串联谐振、并联谐振,都是由电容或/和电感容元件的电压、电流相位差引起的,就像机械共振的节拍一样。
当两个频率相同、相位相位的正弦波叠加时,叠加波的幅度达到最大值,这就是共振现象,在电路里称为谐振。
两个频率相同、相位相反的正弦波叠加,叠加波的幅度会降到最低,甚至为零。这就是减小或吸收振动的原理,如降噪设备。
当一个系统中有多个频率信号混合时,如果有两个同频信号产生了共振,那么这个系统中其它振动频率的能量就被这两个同频、同相的信号所吸收,从而起到了对其它频率的过滤作用。这就是电路中谐振过滤的原理。
谐振需要同时满足频率相同和相位相同两个条件。电路如何通过幅度-频率特性选择频率的方法以前在RC文氏桥中讲过,LC串并联的思路与RC相同,这里不再赘述。下面我们来看看电路谐振中相位补偿的粗略估计(更精确的相位偏移则要计算)
1. RC文氏桥的谐振(图1)
若没有C2,正弦信号Uo的电流由C1→R1→R2,通过R2上压降形成Uf输出电压。由于支路电流被电容C1移相超前Uo 90°,这超前相位的电流流过R2(电阻不产生相移!),使得输出电压Uf电压超前于Uo 90°。
在R2上并联C2,C2从R2取得电压,由于电容对电压的滞后作用,使得R2上电压也被强制滞后。(但不一定有90°,因为还有C1→R1→C2电流对C2上电压即Uf的影响,但在RC特征频率上,并联C2后Uf输出相位与Uo相同。)
小结:并联电容使得电压信号相位滞后,称为电压相位的并联补偿。
1. RC文氏桥的谐振
2. LC并联谐振(图2)
若没有电容C,正弦信号u通过L感应到次级输出Uf,Uf电压超前于u 90°;
在L初级并联电容C,由于电容对电压的滞后作用,使得L上电压也被强制滞后90°。因此,并联C后Uf输出相位与u相同。
2. LC并联谐振
3. LC串联谐振(图3)
对于输入正弦信号u,电容C使得串联回路中负载R上的电流相位超前于u 90°,电感L则使得同一串联回路中的电流相位再滞后90°二者相位偏移刚好抵消。因此,输出Uf与输入u同相。
3. LC串联谐振
总结:(注意,相位影响不一定都是90°,与其它部分相关,具体则要计算)
串联电容使得串联支路电流相位超前,从而影响输出电压相位。
并联电容使得
- 射频陶瓷贴片电容的测试(01-04)
- 射频能量采集技术(07-02)
- 无源滤波电路之浅谈(04-29)
- 陶瓷电容器在高温下的应用(06-03)
- FinFET对动态功耗的影响(07-03)
- 滤波器的使用与设计(06-23)