微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > STM32中USART的DMA 实现

STM32中USART的DMA 实现

时间:12-03 来源:互联网 点击:
对于没玩过DMA 的朋友,这里简单说一下DMA,用自己的语言说吧,那就是,从某个位置
传输数据到某个位置,如果不用DMA,那要CPU参与操作,一个字节一个字节地搬,效率高
点的,就一个字一个字地搬.但当你用了DMA 后,那就是只需要设置:A.从哪里开始搬; B,
搬到哪里去;C以字节方式搬还是半字还是字;D:一共搬多少个.之后,启动DMA.CPU内部
就会开始搬数据了,整个搬数据的过程都不需要指令的参与,唯一要做的,就是检测什么时
候搬完.你可以扫描寄存器,也可以用中断.这里,我使用了中断.
具体设置功能看注释就可以明白了.注意一点就是,有一个设置:
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
这个是外设的地址不递增.也就是说,每次搬动,都是从源头,也就是USART1的DR寄存器
搬,但内存地址却是递增的:
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;

这个历程实现了 接受 串口的数据 写到FLASH 之中工作,而DMA的作用在于将 串口收寄存器 USART1->DR 的 数据写到内存之中 比如某个数组之中 u8 USART1_DMA_Buf1[512]; 写满512个字节之后将进入DMA中断(通道5)在这里修改DMA 的内存写入入口
u8 USART1_DMA_Buf2[512]; ,同时标记 下次的入口Free_Buf_No=BUF_NO1; 与 Buf_Ok=TRUE; 证明已有数据准备完成。这时CUP将USART1_DMA_Buf1中的数据写入FLASH .

又抄了一点

这次使用的是双缓冲,也有人
叫乒乓缓冲.因为一般情况下,串口的数据DMA 传输进BUF1 的过程中,是不建议对
BUF1 进行操作的.但由于串口数据是不会等待的直传,所以你总不能等BUF1 满了,
才往FLASH 上写,因为这时候串口数据依旧是源源不断.于是,使用双缓冲就变的理
所当然了.当BUF1 满了的时候,就马上设置DMA的目标为BUF2,并且BUF1的数据
往25F080上灌.当串口DMA写满了BUF2的时候,再设置DMA的目标为BUF1,此时
再操作BUF2写进25F080.如此一直循环,就好像打乒乓球那样吧,所以就叫乒乓缓冲.
用这个方法的速度极限就是,你必须确保两点a.DMA 灌满了BUF1 的时候,会发生中
断,此时切换DMA 的目标缓冲为BUF2,而且切换的过程必须在新的串口数据溢出之
前完成.b.在DMA的BUF1满之前,另外一个有数据的BUF2必须能全部写进25F080,
其中包括了遇到新的扇区边界而要刷除扇区的操作时间!!
可以看出,BUF的增大,并不能够很大程度的提升速度极限.



假设 USART 与 FLASH 的 底层驱动已经写好了。 点击查看。
/************DMA方式传输***************************/

#defineSRC_USART1_DR (&(USART1->DR)) //串口接收寄存器作为源头

//DMA目标缓冲,这里使用双缓冲
u8USART1_DMA_Buf1[512];
u8USART1_DMA_Buf2[512];
boolBuf_Ok;//BUF是否已经可用
BUF_NOFree_Buf_No; //空闲的BUF号typedefenum{BUF_NO1=0,BUF_NO2=1}BUF_NO;

DMA_InitTypeDefDMA_InitStructure;

voidUSART_DMAToBuf1(void)
{
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);//开DMA时钟
DMA_DeInit(DMA1_Channel5);//将DMA的通道1寄存器重设为缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)SRC_USART1_DR; //源头BUF既是 (&(USART1->DR))
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)USART1_DMA_Buf1; //目标BUF 既是要写在哪个个数组之中
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //外设作源头//外设是作为数据传输的目的地还是来源
DMA_InitStructure.DMA_BufferSize = 512; //DMA缓存的大小 单位在下边设定
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不递增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //外设字节为单位
DMA_InitStructure.DMA_MemoryDataSize = DMA_PeripheralDataSize_Byte; //内存字节为单位
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //工作在循环缓存模式
DMA_InitStructure.DMA_Priority = DMA_Priority_High; //4优先级之一的(高优先)VeryHigh/High/Medium/Low
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //非内存到内存
DMA_Init(DMA1_Channel5, &DMA_InitStructure);//根据DMA_InitStruct中指定的参数初始化DMA的通道1寄存器

DMA_ITConfig(DMA1_Channel5, DMA_IT_TC, ENABLE); //DMA5传输完成中断


USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE); //使能USART1的接收DMA请求
/*****************************************************************************************************************************************************/
//初始化BUF标志
Free_Buf_No=BUF_NO2;//因为 DMA_InitStructure.DMA_MemoryBaseAddr = (u32)USART1_DMA_Buf1;
Buf_Ok=FALSE;//此时没有数据准备完成 当然FALSE
DMA_Cmd(DMA1_Channel5, ENABLE); //正式允许DMA

}

再来看看DMA中断:

//u16DataCounter;
externDMA_InitTypeDefDMA_InitStructure;
voidDMA1_Channel5_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC5))//通道5传输完成中断TC还有传输 过半中断HT 错误中断TE 全局中断GL
{
//DataCounter = DMA_GetCurrDataCounter(DMA1_Channel5);//获取剩余长度,一般都为0,调试用
DMA_ClearITPendingBit(DMA1_IT_GL5);//清除全部中断标志

//转换可操作BUF
if(Free_Buf_No==BUF_NO1)
{
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)USART1_DMA_Buf1;
DMA_Init(DMA1_Channel5, &DMA_InitStructure);
Free_Buf_No=BUF_NO2;
}
else
{
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)USART1_DMA_Buf2;
DMA_Init(DMA1_Channel5, &DMA_InitStructure);
Free_Buf_No=BUF_NO1;
}
Buf_Ok=TRUE;//有准备好的数据了

}
}

写FLASH的操作
while(1)
{
if(Buf_Ok==TRUE)
{
上一篇:STM32 RCC配置
下一篇:STM32 的I2C 硬使用

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top