微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 阻抗测试基础(上)

阻抗测试基础(上)

时间:04-05 来源: 电子工程专辑 作者:孙灯亮 点击:

仅受单一残余成分的影响时,只需由测量值减去误差值,即可得到有效值。如下图所示的低值电容测量的情况,与DUT电容Cx并联的杂散电容Co对测量结果的影响最大,可通过从测量值Cm减去杂散电容值进行补偿。杂散电容值可从测量端开路时获得。

 

 

27

图27 偏移补偿

3.3.2 开路和短路补偿

开路和短路补偿是当前阻抗测量仪器最常用的补偿技术。这种方法假定测试夹具的残余参数可以用简单的L/R/C/G电路表示,如下图(a)所示。当未知端开路,如下图(b)所示时,把所测杂散导纳Go+jwCo作为Yo,因为残余阻抗Zs可以忽略。当未知端短路,如下图(c)所示时,所测阻抗即代表残余阻抗Zs=Rs+jwLs,因为Yo被旁路。这样,由于各残余参数均已知,即可从下图(d)所给出的公式计算DUT的阻抗Zdut。

 

 

28

图28 开路/短路法补偿

3.3.4 开路、短路和负载补偿

   

有很多测量条件,复杂的残余参数不能按上图所示的简单等效电路建模。开路/短路/负载补偿是一种适用于复杂残余电路的先进补偿技术。为进行开路/短路/负载补偿,在测量DUT前先要进行3项测量,即把测试夹具端开路、短路,以及连接基准DUT(负载)。在进行DUT测量时,就可在计算中使用这些得到的测量结果(数据)。如下图所示,开路/短路/负载补偿所建立的测试夹具残余阻抗模型是用ABCD参数表示的4端网络电路。如果这3项已知,并且该4端网络电路时线性电路,那么就能知道每一个参数。

在下述情况下应使用开路/短路/负载补偿:

接有附加的无源电路或元件(例如外部DC偏置电路,平衡-不平衡变压器,衰减器和滤波器)。

使用扫描器,多路转换器或矩阵开关。

使用非标准长度的测试电缆,或由标准安捷伦测试电缆扩展4TP电缆。

用放大器增强测试信号。

使用元件插装机。

使用用户制作的测试夹具。

在上面所列的情况下,开路/短路补偿将不能满足要求,测量结果会有相当大的误差。

 

 

29

图29 开路/短路/负载补偿

3.4 接触电阻产生的误差

   

DUT电极与测试夹具或测试台电极间所存在的任何接触电阻都会造成测试误差。DUT的2端或4端连接方式的接触电阻影响有所不同。在2端连接的情况下,接触电阻以串联方式叠加到DUT阻抗,造成D(耗散因数)读数的正误差。在4端口连接的情况下,存在如下图(b)所示的接触电阻Rhc、Rhp、Rlc和Rlp。不同端子的接触电阻影响也有所不同。Rhc减小施加于DUT的测试信号电平,但它不直接产生测量误差。Rlp可能造成自动平衡电桥的不平衡,但通常可忽略这一影响。Rhp和Chp构成低通滤波器,它会造成Hp输入信号的衰减和相移,从而产生测量误差。

 

30

图30 接触电阻产生的误差

3.5 测量电缆扩展引入的误差

   

从仪器扩展的4TP测量电缆将会按扩展电缆的长度和测量频率引入测量信号的幅度误差和相移。电缆扩展会带来下面两个问题:

阻抗测量结果中的误差

电桥不平衡

   

测量误差主要由接到Hp和Lc端的电缆造成,如果电缆的长度和传播常数已知,仪器就可以对其补偿。包括Rr、放大器和Lp及Lc电缆在内的反馈回路相移会造成电桥的不平衡。但可在反馈电路内部进行相移补偿。只有在较高的频率区(通常高于100KHz),这两个问题才有重大影响,而且安捷伦阻抗测试仪器能补偿安捷伦提供的电缆。在较低频率区,电缆的电容仅会使测量精度下降(不影响电桥平衡)。

电缆长度补偿用于长度和传播常数已知的测试电缆,比如安捷伦提供的1m(2m或4m)测试电缆。如果使用各种长度不同类型电缆,除了测量误差外,还可能造成电桥不平衡。

3.6并联直通法的校准和补偿

   

用E5061B测试PDN的毫欧姆级阻抗,使用并联直通法,也需要考虑校准和补偿。一般测试低频时,使用增益-相位测试端口,通常只有做直通校准即可得到足够的阻抗测试精度。测试高频时,使用S参数测试端口,这是可以使用SOLT校准,或SOLT校准加上端口延伸,如果使用探针台,则可以用探针台提供的校准件,用SOLT直接校准到探头尖位置。

 

 

31

图31 用于低阻抗测量的并联直通法的校准和补偿

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top