X和Ku波段小尺寸无线电设计
的1 × 1的结果。其他亮显单元显示可能有问题的带内频率,它们可能表现为带内杂散。例如,15.55 GHz信号在12 GHz到16 GHz的目标范围内。输入端一个15.55 GHz信号音与LO混频,产生一个5.1 GHz信号音(18.1 × 2–15.55 × 2 = 5.1 GHz)。其他未亮显行也可能造成问题,但由于其在带外,可以通过输入带通滤波器滤除。
图7.12 GHz至16 GHz Rx Tx高中频架构
杂散水平取决于多个因素。主要因素是混频器的性能。混频器从根本上说是一个非线性器件,其内部会产生许多谐波。根据混频器内部二极管的匹配精度和混频器杂散性能的优化程度,可确定输出杂散水平。数据手册通常会提供一个混频器杂散图表,它可以帮助确定杂散水平。表2所示的例子是混频器HMC773ALC3B的杂散水平表。该表给出的是杂散相对于1 × 1目标信号音的dBc水平。
表2.HMC773ALC3B混频器杂散表
利用此杂散表并扩展表1中所做的分析,我们便可全面了解哪些m × n镜像音可能会干扰接收机,以及其水平是多少。可以生成一个电子表格,其输出与图8所示相似。
图8. 12 GHz至16 GHz Rx的m × n镜像
此图中的蓝色部分表示所需带宽。线段表示不同的m × n镜像及其水平。由此图很容易知道,混频器之前需要满足什么样的滤波要求才能消除干扰。本例中有多个镜像杂散落在带内,无法滤除。下面将说明如何利用高中频架构的灵活性来绕开其中的一些杂散,这是超外差架构做不到的。
接收模式下避开干扰
图9显示了一个类似频率规划,其范围是8 GHz到12 GHz,默认IF为5.1 GHz。此图是混频器杂散的另一种视图,显示了中心调谐频率与m × n镜像频率的关系,而不是之前所示的杂散水平。此图中的1:1粗对角线表示期望的1 × 1杂散。图上的其他直线代表m × n镜像。此图左侧代表IF调谐无灵活性的部分。这种情况下,IF固定在5.1 GHz。调谐频率为10.2 GHz时,2 × 1镜像杂散跨过目标信号。这意味着如果调谐到10.2 GHz,那么很有可能附近信号会阻塞目标信号的接收。右侧显示了通过灵活IF调谐解决这个问题的办法。这种情况下,在9.2 GHz附近时IF从5.1 GHz切换到4.1 GHz,从而防止交越杂散发生。
图9. 无IF灵活性时的m × n交越杂散(上),利用IF调谐避开交越(下)
这只是一个说明高中频架构如何避开阻塞信号的简单例子。当结合智能算法来确定干扰并计算新的可能IF频率时,便有许多可行的方法来构建一种能够灵活适应任何频谱环境的接收机。这就像确定给定范围(通常是3 GHz到6 GHz)内的合适IF一样简单,然后根据该频率重新计算并设置LO。
高中频架构发射机频率规划
同接收频率规划一样,也可以利用高中频架构的灵活性来改善发射机的杂散性能。对接收机而言,频率成分有时是无法预测的。但对发射机而言,输出端的杂散更容易预测。此RF成分可利用下式来预测:
RF = m × IF ± n × LO
RF = m × IF ± n × LO
其中,IF通过AD9371调谐频率预先确定,LO通过所需输出频率确定。
图10.无滤波的输出杂散
像对待接收通道一样,发射侧也可以生成混频器图表。示例如图10所示。在此图中,最大杂散是镜像和LO频率,利用混频器之后的带通滤波器可将其降到所需水平。在FDD系统中,杂散输出可能会使邻近接收机降敏,带内杂散会带来问题,这种情况下IF调谐的灵活性便很有用。在图10所示例子中,如果使用5.1 GHz的静态IF,发射机输出端会存在一个接近15.2 GHz的交越杂散。通过将14 GHz调谐频率时的IF调整到4.3 GHz,便可避开该交越杂散,如图11所示。
图11.静态IF引起交越杂散(上),利用IF调谐避开交越杂散(下)
设计示例——宽带FDD系统
为了展示这种架构能够实现的性能,我们利用ADI公司成品器件构建了一个接收机和发射机FDD系统原型,其接收频段的工作频率范围配置为12 GHz至16 GHz,发射频率的工作频率范围为8 GHz至12 GHz。使用5.1 GHz的IF来收集性能数据。接收通道的LO范围设置为17.1 GHz至21.1 GHz,发射通道的LO范围设置为13.1 GHz至17.1 GHz。原型的功能框图如图12所示。在该图中,X和Ku变频器板显示在左侧,AD9371评估板显示在右侧。
图12.X和Ku波段Rx Tx FDD原型系统功能框图
增益、噪声系数和IIP3数据在接收下变频器上收集,显示于图13(上)中。整体而言,增益约为20 dB,NF约为6 dB,IIP3约为–2 dBm。利用均衡器可实现
- 基站射频可当黑盒子设计,背寄存器的时代结束了!(10-05)
- 直接变频接收机设计可实现多标准/多频带运行(10-11)