PCI总线的配置
2.4
PCI总线定义了两类配置请求,一个是Type 00h配置请求,另一个是Type 01h配置请求。PCI总线使用这些配置请求访问PCI总线树上的设备配置空间,包括PCI桥和PCI Agent设备的配置空间。
其中HOST主桥或者PCI桥使用Type 00h配置请求,访问与HOST主桥或者PCI桥直接相连的PCI Agent设备或者PCI桥[1];而HOST主桥或者PCI桥使用Type 01h配置请求,需要至少穿越一个PCI桥,访问没有与其直接相连的PCI Agent设备或者PCI桥。如图2?8所示,HOST主桥可以使用Type 00h配置请求访问PCI设备01,而使用Type 01h配置请求通过PCI桥1、2或者3转换为Type 00h配置请求之后,访问PCI总线树上的PCI设备11、21、22、31和32[2]。
当x86处理器对CONFIG_DATA寄存器进行读写操作时,HOST主桥将决定向PCI总线发送Type 00h配置请求还是Type 01h配置请求。在PCI总线事务的地址周期中,这两种配置请求总线事务的不同反映在PCI总线的AD[31:0]信号线上。
值得注意的是,PCIe总线还可以使用ECAM(Enhanced Configuration Access Mechanism)机制访问PCIe设备的扩展配置空间,使用这种方式可以访问PCIe设备256B~4KB之间的扩展配置空间。但是本节仅介绍如何使用CONFIG_ADDRESS和CONFIG_FATA寄存器产生Type 00h和Type 01h配置请求。有关ECAM机制的详细说明见第5.3.2节。
处理器首先将目标PCI设备的ID号保存在CONFIG_ADDRESS寄存器中,之后HOST主桥根据该寄存器的Bus Number字段,决定是产生Type 00h配置请求,还是Type 01h配置请求。当Bus Number字段为0时,将产生Type 00h配置请求,因为与HOST主桥直接相连的总线号为0;大于0时,将产生Type 01h配置请求。
2.4.1 Type 01h和Type 00h配置请求
本节首先介绍Type 01h配置请求,并从PCI总线使用的信号线的角度上,讲述HOST主桥如何生成Type 01配置请求。在PCI总线中,只有PCI桥能够接收Type 01h配置请求。Type 01h配置请求不能直接发向最终的PCI Agent设备,而只能由PCI桥将其转换为Type 01h继续发向其他PCI桥,或者转换为Type 00h配置请求发向PCI Agent设备。PCI桥还可以将Type 01h配置请求转换为Special Cycle总线事务(HOST主桥也可以实现该功能),本节对这种情况不做介绍。在地址周期中,HOST主桥使用配置读写总线事务,将CONFIG_ADDRESS寄存器的内容拷贝到PCI总线的AD[31:0]信号线中。CONFIG_ADDRESS寄存器与Type 01h配置请求的对应关系如图2?11所示。
从图2?11中可以发现,CONFIG_ADDRESS寄存器的内容基本上是原封不动的拷贝到PCI总线的AD[31:0]信号线上的[3]。其中CONFIG_ADDRESS的Enable位不被拷贝,而AD总线的第0位为必须为1,表示当前配置请求是Type 01h。
当PCI总线接收到Type 01配置请求时,将寻找合适的PCI桥[4]接收这个配置信息。如果这个配置请求是直接发向PCI桥下的PCI设备时,PCI桥将接收个Type 01配置请求,并将其转换为Type 00h配置请求;否则PCI桥将当前Type 01h配置请求原封不动的传递给下一级PCI总线。
如果HOST主桥或者PCI桥发起的是Type 00h配置请求,CONFIG_ADDRESS寄存器与AD[31:0]的转换如图2?12所示。
此时处理器对CONFIG_DATA寄存器进行读写时,处理器将CONFIG_ADDRESS寄存器中的Function Number和Register Number字段拷贝到PCI的AD总线的第10~2位;将AD总线的第1~0位赋值为0b00。PCI总线在配置请求总线事务的地址周期根据AD[1:0]判断当前配置请求是Type 00h还是Type 01h,如果AD[1:0]等于0b00表示是Type 00h配置请求,如果AD[1:0]等于0b01表示是Type 01h配置请求。
而AD[31:11]与CONFIG_ADDRESS的Device Number字段有关,在Type 00h配置请求的地址周期中,AD[31:11]位有且只有一位为1,其中AD[31:11]的每一位选通一个PCI设备的配置空间。如第1.2.2节所述,PCI设备配置空间的片选信号是IDSEL,因此AD[31:11]将与PCI设备的IDSEL信号对应相连。
当以下两种请求之一满足时,HOST主桥或者PCI桥将生成Type 00h配置头,并将其发送到指定的PCI总线上。
(1)
(2)
2.4.2 PCI总线配置请求的转换原则
当CONFIG_ADDRESS寄存器的Enable位为1,系统软件访问CONFIG_DATA寄存器时,HOST主桥可以产生两类PCI总线配置读写总线事务,分别为Type 00h和Type 01h配置读写总线事务。在配置读写总线事务的地址周期和数据周期中,CONFIG_ADDRESS和CONFIG_DATA寄存器中的数据将被放置到PCI总线的AD总线上。其中Type 00h和Type 01h配置读写总线事务映射到AD总线的数据并不相同。其中Type 00h配置请求可以直接读取PCI Agent设备的配置空间,而Type 01h配置请求在通过PCI桥时,最终将被转换为Type 00h配置请求,并读取PCI Agent设备的配置寄存器。本节重点讲述PCI桥如何将Type 01h配置请求转换为Type 00h配置请求。
首先Type 00h配置请求不会被转换成Type 01h配置请求,因为Type 00h配置请求是发向最终PCI Agent设备,这些PCI Agent设备不会转发这些配置请求。
当CONFIG_ADDRESS寄存器的Bus Number字段为0时,处理器对CONFIG_DATA寄存器操作时,HOST主桥将直接产生Type 00h配置请求,挂接在PCI总线0上的某个设备将通过ID译码接收这个Type 00h配置请求,并对配置寄存器进行读写操作。如果PCI总线上没有设备接收这个Type 00h配置请求,将引发Master Abort,详情见PCI总线规范,本节对此不做进一步说明。
如果CONFIG_ADDRESS寄存器的Bus Number字段为n(n≠0),即访问的PCI设备不是直接挂接在PCI总线0上的,此时HOST主桥对CONFIG_DATA寄存器操作时,将产生Type 01h配置请求,PCI总线0将遍历所有在这条总线上的PCI桥,确定由哪个PCI桥接收这个Type 01h配置请求。
如果n大于等于某个PCI桥的Secondary Bus Number寄存器,而且小于等于Subordinate Bus number寄存器,那么这个PCI桥将接收在当前PCI总线上的Type 01配置请求,并采用以下规则进行递归处理。
(1)
(2)
(3)
(4)
(5)
下文将举例说明PCI总线配置请求的转换原则,并以图2?8为例说明处理器如何访问PCI设备01和PCI设备31的配置空间。PCI设备01直接与HOST主桥相连,因此HOST主桥可以使用Type 00h配置请求访问该设备。
而HOST主桥需要经过多级PCI桥才能访问PCI设备31,因此HOST主桥需要首先使用Type 01h配置请求,之后通过PCI桥1、2和3将Type 01h配置请求转换为Type 00h配置请求,最终访问PCI设备31。
1 PCI设备01
这种情况较易处理,当HOST处理器访问PCI设备01的配置空间时,发现PCI设备01与HOST主桥直接相连,所以将直接使用Type 00h配置请求访问该设备的配置空间,具体步骤如下。首先HOST处理器将CONFIG_ADDRESS寄存器的Enable位置1,Bus Number号置为0,并对该寄存器的Device、Function和Register Number字段赋值。当处理器对CONFIG_DATA寄存器访问时,HOST主桥将存放在CONFIG_ADDRESS寄存器中的数值,转换为Type 00h配置请求,并发送到PCI总线0上,PCI设备01将接收这个Type 00h配置请求,并与处理器进行配置信息交换。
2 PCI设备31
HOST处理器对PCI设备31进行配置读写时,需要通过HOST主桥、PCI桥1、2和3,最终到达PCI设备31。当处理器访问PCI设备31时,首先将CONFIG_ADDRESS寄存器的Enable位置1,Bus Number字段置为3,并对Device、Function和Register Number字段赋值。之后当处理器对CONFIG_DATA寄存器进行读写访问时,HOST主桥、PCI桥1、2和3将按照以下步骤进行处理,最后PCI设备31将接收这个配置请求。
(1)
(2)
(3)
(4)
(5)
2.4.3 PCI总线树Bus号的初始化
在一个处理器系统中,每一个HOST主桥都推出一颗PCI总线树。在一颗PCI总线树中有多少个PCI桥(包括HOST主桥),就含有多少条PCI总线。系统软件在遍历当前PCI总线树时,需要首先对这些PCI总线进行编号,即初始化PCI桥的Primary、Secondary和Subordinate Bus Number寄存器。在一个处理器系统中,一般将与HOST主桥直接相连的PCI总线被命名为PCI总线0。然后系统软件使用DFS(Depth First Search)算法,依次对其他PCI总线进行编号。值得注意的是,与HOST主桥直接相连的PCI总线,其编号都为0,因此当处理器系统中存在多个HOST主桥时,将有多个编号为0的PCI总线,但是这些编号为0的PCI总线分属不同的PCI总线域,其含义并不相同。
在一个处理器系统中,PCI总线树的结构如图2?13所示。当然在一个实际的处理器系统中,很少会出现这样复杂的PCI总线树结构,本节采用这个结构的目的是便于说明PCI总线号的分配过程。
PCI总线配 相关文章:
- 获取PCI总线上任何配置头信息(12-15)
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)