中央空调系统水泵变频节能改造方案
,带走房间内的热量,使房间内的温度下降。 ⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。 4、冷却风机 ⑴、室内风机:安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换; ⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。 中央空调系统的四个部分都可以实施节电改造。但冷冻水机组和冷却水机组的改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造。 四、中央空调变频系统改造方案 现将内蒙古某饭店的中央空调系统的变频节能改造方案做一具体介绍。 1.中央空调原系统简介: 1.1该集饭店中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW。均采用两用一备的方式运行。冷却塔2台,风扇电机11KW,并联运行。室内风机4台,5.5KW,并联运行。 1.2原系统的运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好的居住环境,饭店大部空间采用全封密的,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y—△起动方式,电机的起动电流均为其额定电流的3—4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化。另外由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常接到客人的投诉,处理这些投诉造成不少人力资源的浪费。 根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命。 2.中央空调系统节能改造的具体方案 中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统)。根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造的成功范例进行考察,现在水泵系统节能改造的方案大都采用变频器来实现。 2.1 、冷冻(媒)水泵系统的闭环控制 制冷模式下冷冻水泵系统的闭环控制 该方案在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调。 该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统的控制方案。同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减。不同的是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到的冷冻水回水温越高,变频器的输出频率越低。
中央空调系统水泵变频节 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)