微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 老工程师的频谱分析仪的使用心得

老工程师的频谱分析仪的使用心得

时间:10-08 来源:互联网 点击:

本人从事射频系统测试有一段时间了,经过工程测试实践,总结了一下频谱仪的使用。频谱仪可以用来测量和显示被测信号得频率和幅值,可以将复杂信号分离或解调为频率和幅值不同的正弦波。下图为常见的频谱仪分析仪。

1
图1 Agilent频谱仪 

 

2

图2 R&S频谱仪

 

3
图3 中国电子科技集团公司第四十一研究所的频谱仪

 

4  
图4 手持频谱仪


一、介绍频谱仪前,先介绍几个概念:

1 频谱

频谱是频率谱密度的简称,是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。

5

图5 频谱图


2 dBm,dB

dB是一个比值取log是一个相对量,例如:dB=20log(V1/V2),dB=10log(P1/P2)dBm是一个功率值取log,是绝对值,例如:dBm=10log(P1)dBm与dB的关系:dB=dBm-dBm。

二、频谱仪的分类。


一般分为FFT(快速傅里叶变化)和扫频式频谱仪。其中FFT式频谱仪适合窄分析带宽,快速测量场合,扫频式频谱仪适合宽频带分析场合。常用的为扫频式频谱仪,下面主要介绍扫频式频谱仪的原理图,下图6位扫频式频谱仪的原理图。

6


图6 频谱仪内部原理图


1.输入衰减器信号进入频谱仪后,先经过一个输入衰减器,作用为防止大信号进入混频器,造成混频器过载,增益压缩,畸变。衰减器雨后面的中频放大器是互动的,中频放大器补偿前面的衰减值,保证信号大小不变。

2.低通滤波器低通滤波器决定了频谱仪的分析能力,频谱仪上标注的频率范围就是由此滤波器决定。

3.混频器混频器,通过本振(LO)将输入信号下变频到中频。

 

7

图7 混频器原理     

4.中频滤波器中频滤波器即频谱仪面板上设置的RBW,是可调的,调节RBW会影响频率选择性,信噪比和测试速度。

8

图8 不同RBW的信号频谱图


5.包络检波器将中频信号转换为基带信号或者视频信号。有正向检波(显示最大值),负向检波(显示最小值),采样检波(显示中值)。6.视频滤波器一般为一低通滤波器,此滤波器主要是为了减少噪声的峰峰值变化,测试小信号时会用到。


三、频谱仪测试


都知道频谱仪可以观测信号的频谱,信号的功率,测试系统的杂散,谐波,交调失真功能。


1.测量信号的频率与功率
下图9为信号源发出一单载波信号后,频谱仪的显示,通过MARK——PEAK,操作可以看到信号频率为50.005MHz,功率为-20.17dBm。

9
图9 信号的频谱


2.交调失真测试
下图10为信号交调失真测试图,通过mark-DELT标注功能可以测试信号与交调信号功率差(dB)

10
图10 交调测试图


3.谐波测试
频谱仪可以测试被测信号的各次谐波,可以用频谱仪自带的频谱测试功能,MEASURE-harmonic测试,也可以通过测试信号的频率f,然后改变频谱仪的中心频率到2f,3f….然后PEAK一下,测试各次谐波的功率。

11
图11 谐波测试图


4.测量调制信号的带宽 
频谱仪可以测试信号的带宽,可以测试3dB带宽,也可以测试99%信号能量带宽 。下图12为99%信号能量带宽。

12
图12 信号带宽测试


5.峰均比测试
频谱仪测试中,还有一个功能为峰均比测试(CCDF),某一调制信号的峰均比测试如下图13。

 

13
图13 峰均比测试图


四、测试结果的准确性判断:


测试一个信号的功率值是否准确时,可以改变衰减器衰减值,看信号功率是否发生变化来判断。

14
图14 信号准确性判断图


五、调制信号功率测试方法


上面介绍了频谱仪的原理及基本使用与测试,下面介绍测试信号的功率(TDD系统的发射功率,或者突发信号的功率),TD系统是有时隙的,收发交替,所以直接用一般的平均式功率计测试信号功率不准确,需要知道收发比等指标,但是一般的射频工程师可能不会去了解时隙结构等,测试不方便,用常规频谱仪测试功率很好的解决这一问题。下面介绍两种个人觉得比较合适的测试方法(以R&S频谱仪测试为例)。


1.信道功率法

 

15
图15 R&S频谱仪


此方法是根据信号ACPR的测试方法而来,LTE系统等都需要测试ACPR这个指标,以R&S的频谱仪为例,操作方法:MEAS——chanPWR ACP——CP/ACP Config
需要配置的参数:


1.邻道个数(第一邻道,第二邻道,第三邻道),NO.of ADJ channel。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top