一种利用有源偏置控制器偏置射频/微波放大器的最佳解决方案
一般而言,大多数外部偏置放大器的建议偏置序列是相似的。不同器件会有不同的IDQ、VDDx和VGGx值。为了关闭器件,GaAs器件的VGG一般设置为−2 V或−3 V,而对于氮化镓(GaN)放大器,该电压可能是−5 V至−8 V。类似地,GaN器件的VDDx可能达到28 V,甚至50 V,而GaAs放大器通常小于13 V。
多级放大器的VGG引脚一般连在一起并一同偏置。遵循相同的程序,用户便可获得数据手册上提供的典型性能结果。在不同偏置条件下使用放大器可能会提供不同的性能。例如,将不同的VGGx电平用于HMC1131栅极偏置引脚以获得不同的IDQ值,会改变放大器的射频和直流性能。
图5显示了HMC1131在不同电源电流下P1dB与频率的关系,图6显示了不同电源电流下输出三阶交调截点(IP3)性能与频率的关系。
图5.不同电源电流下P1dB与频率的关系
图6.不同电源电流下输出IP3与频率的关系,POUT/信号音 = 10 dBm
利用多个VGGx引脚偏置放大器的另一种方案是独立控制栅极偏置引脚。该工作模式通过优化特定参数(如P1dB、IP3、NF、增益和功耗等)来帮助用户定制器件。
这种灵活性对某些应用很有利。如果放大器数据手册上提供的性能数据能够轻松满足应用的某些要求,但与其他要求略有差距,那么在不超过数据手册给定的绝对最大额定值的情况下,测试不同偏置条件下的性能可能会有益。
偏置外部偏置放大器的另一种方案是设置VGGx以获得所需的225 mA IDQ,并在正常工作期间使用恒定栅极电压。这种情况下,放大器的IDD会在射频驱动下提高。此行为参见HMC1131数据手册中的30.5 GHz功率压缩图(如橙线所示)。栅极电压恒定的放大器和IDD恒定的放大器可能提高不同的性能。
共源共栅放大器
ADI公司宽带分布式放大器常常使用共源共栅架构来扩展频率范围。共源共栅分布式放大器使用一个基频单元,后者由两个FET串联而成,源极到漏极。然后多次复制该基频单元。这种复制会提高工作带宽。图7所示为基频单元的原理示意图。
图7.基频共源共栅单元原理示意图
除了一些例外之外,共源共栅宽带放大器一般是外部偏置。
HMC637A是一款采用共源共栅拓扑结构的宽带放大器。HMC637A是一款GaAs、MMIC、金属半导体场效应晶体管(MESFET)分布式功率放大器,工作频率范围为DC至6 GHz。图8显示了HMC637A的引脚连接。
图8.HMC637A引脚连接
该放大器提供14 dB增益、43 dBm输出IP3和30.5 dBm输出功率(1 dB增益压缩),偏置条件为VDD = 12 V、VGG2 = 6 V和IDQ = 400 mA。HMC637A数据手册中的电气规格表给出了此信息。
为了实现建议的400 mA静态漏极电流,VGG1必须位于0到−2 V之间。要设置所需的负电压,上电和掉电期间应遵守建议的偏置序列。
下面是HMC637A上电期间的建议偏置序列:
- 连接到地。
- 将VGG1设置为−2 V。
- 将VDD设置为12 V。
- 将VGG2设置为6 V(VGG2可通过电阻分压器从VDD获得)。
- 提高VGG1以实现400 mA的典型静态电流(IDQ)。
- 施加射频信号。
下面是HMC637A掉电期间的建议偏置序列:
- 关闭RF信号。
- 降低VGG1至−2 V以实现IDQ = 0 mA。
- 将VGG2降至0 V。
- 将VDD降至0 V。
- 将VGG1提高至0 V。
利用有源偏置控制器偏置外部偏置放大器
偏置外部偏置放大器主要有两种方法:
● 恒定栅极电压方法。这种方法首先通过改变栅极电压值来实现所需的IDQ值。然后,此栅极电压值在工作期间保持不变,这通常导致射频驱动下的漏极电流(IDD)会发生变化。
● 恒定IDD方法。这种方法首先改变栅极电压值以实现所需的IDQ值,然后监视放大器的IDD值,并且不断调整栅极电压值,从而在不同射频驱动水平下具有相同的IDD值。有源偏置控制器使被测器件(DUT)的IDD保持恒定。
还有一种方法,它属于恒定IDD方法,步骤如下:先按照恒定IDD方法操作,然后根据现场具体情况的需要,在多个恒定IDD电平之间切换。例如,在雨天,用户可以偏置发射机的功率放大器级以获得高电流水平,从而补偿额外的雨致衰减。而在晴天,用户可以偏置该功率放大器以获得低电流水平,从而降低功耗。
ADI公司的射频放大器一般采用恒定栅极电压方法和台式电源单元来标定。因此,利用恒定IDD方法偏置这些放大器可能导致其射频性能不同于放大器数据手册给出的性能。
设计放大器偏置电路以使漏极电流保持恒定并提供必要的时序控制会很麻烦。这种控制电路会很复杂,不仅需要多个外部器件,如低压差稳压器(LDO)、电荷泵、电压时序控制和
- 如何选择合适的射频电感(04-22)
- 亚运在深圳系列之四:曾经的挂科王(11-21)
- 射频电路的PCB设计(12-04)
- Wi-Fi产品射频电路EVM降低的一般原因(03-01)
- 手机射频电路组成和特点分析(07-13)
- RFIC的沧海桑田(08-01)