微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 电动汽车锂电池管理系统的研究与实现 — 模糊诊断专家系统

电动汽车锂电池管理系统的研究与实现 — 模糊诊断专家系统

时间:12-20 来源:互联网 点击:

专家系统(EXPERT SYSTEM)是一个具有大量专门知识的程序系统,它应用人工智能(ARTIFICIAL INTELLIGENCE,简称AI)技术,根据一个或多个人类专家提供的特殊领域知识进行推理,模拟人类专家作决定的过程来解决那些需要专家才能解决的复杂问题。电池组故障诊断模糊专家系统是电池管理系统的一部分,它以模糊数学与模糊诊断原理为基础,将电池专家和有关蓄电池使用和维护的书籍上总结出的经验和规则存入知识库中,以电池的历史档案、运行状况和上一次的诊断结果为依据,采用模糊综合评判的方法对电池故障进行诊断,同时给出电池的健康状况和维护信息。通过专家诊断系统,我们可以挑选出性能较差的电池,保证纯电动车或者混合电动车的车用电池组性能上的一致,也使剩余电量估计模型能够更准确更好的应用于电动车上。


7.1 模糊数学与模糊诊断方法

在电池故障诊断中专家所描述的症状,如“电压上升快”、“充电不足”、“电压下降快”等,是界限不清的模糊集合。我们通过模糊数学模型加以描述。用模糊关系矩阵来反映某些故障机理,并选用适当的隶属函数,用相应的隶属度来描述这些症状存在的倾向性。模糊故障诊断方法就是根据某些症状的隶属度来求出各种故障的隶属度,用以表征各种故障存在的倾向性,为判断电池故障和采取补救措施的决策提供科学的依据。下面介绍模糊数学模型和我们采用的综合评判方法。



两论域之间显然存在着某种模糊关系。例如,某一故障将引起若干强弱不同的症状,而某一症状也表征着若干个故障的存在。这个模糊关系可通过隶属度表示,例如,可定出症状x j相应于故障v i的隶属度:


它组成了论域U和论域V之间的模糊关系矩阵:



如果已知模糊关系矩阵R和模糊向量α,就可求得模糊向量β。

这就是多因素评判:


其中,各症状的隶属度向量α可以从测量数据和历史档案通过一定的隶属函数求得。至于模糊关系矩阵,它是大量分析、实验、测试和现场实践经验的总结,可以通过大量实验和总结有关专家,技术人员和工人的经验来决定。同时还可以参考大量的相关资料和前人的经验。

在我们的系统中采用的运算模型将模糊关系的运算式展开如下:



其中“*”为代数乘,运算(r1jxj)可看成是对隶属度μxj的加权修正,rij可看成是加权值,因而要求rij归一化,即令



而代数和“+”则表示对诸因素的综合。因为rij已归一化,因而在对诸因素的综合过程中,用代数和能最好地反映出各因素的作用和影响。

7.2模糊诊断专家系统设计方案

电池组故障诊断模糊专家系统将有关锂电池使用和维护的经验和规则存入知识库中,以电池的历史档案、运行状况和上一次的诊断结果为依据,采用模糊综合评判的方法对电池故障进行诊断,同时给出电池的健康状况DOH(Degree Of Health)和维护信息。其功能结构如图7.1所示,SOR(State Of Running)为电池运行状况。

历史档案和规则库组成了电池组诊断模糊专家系统的知识库,历史档案里存放的是每个电池提供给专家系统诊断用的数据,而规则库里存放的是数字化了的专家提供的诊断规则,专家系统利用这些规则和历史档案中的数据给每个电池进行综合评判,得出电池隶属于各故障存在的隶属度。利用这些隶属度,综合后给出电池的失效程度DOF(Degree Of Failure)。计算DOF的方法是:如果所有故



障存在的隶属度最多只有一个大于0.5,则DOF取隶属度最大的一个;如果存在两个以上故障存在的隶属度大于0.5,则DOF取这几个故障的并集,各故障之间的综合采用运算。对其运算的定义如下:



其中a、b分别为两个故障存在的隶属度。采用这种运算方式是因为各个不同的故障对电池失效所起的扶持和加强作用。例如,设电池极板损坏存在的隶属度为a=0.8,电池老化存在的隶属度为b=0.5.如果采用最大最小运算法则,则综合的隶属度μ=0.8.但实际上,由于电池老化的存在加强了我们对判断电池失效的信念。如果用运算,则可得μ=0.9,其值大于电池极板损坏的隶属度,这样能对所有因素的影响和作用都给予适当的考虑,比起极大极小运算模型只突出主故障的法则,能更全面地反映实际。

电池的健康状况DOH(Degree Of Health),是我们为反映电池使用性能的现有状况而提出的,将电池按照其性能的好坏程度而进行分类的概念。在我们的系统中,电池的DOH被分为十级,被确定为第四级以下的电池应该被更换,第四级至第六级电池应该加强维护,第七级至第十级电池为健康电池。



DOF、最近两个CYCLE的SOR和上一次的诊断结果DOH^的加权和作为此次诊断的最终诊断结果:电池的健康状况DOH值。其中,C1 + C2 + C3 =1,在我们现在系统中它们分别为(3/10,4/10,3/10),加权值的大小是在实验中不断调整得出的。

诊断模块根据这些规则和模糊化的数据对每个电池进行诊断,给出电池隶属于每种故障的隶属度,根据隶属原则得出诊断结果。

DOH值作为电池的一个重要信息被保存在电池管理系统中,用户可通过显示模块进行查看。同时诊断结果、诊断得出的中间结果和历史档案数据都可被传到上位机上,供专业人士查看。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top