基于LMS Virtual.Lab的汽车排气消声器快速分析关键技术研究
时间:12-21
来源:互联网
点击:
1.引言
在汽车排气消声器设计或改进过程中,迅速的预测目标消声器的传声损失(Sound Transmission Loss),能够为进一步的分析设计提供可靠的依据、指导,因此对提高消声器设计水平具有重要的意义。目前常用的消声器的声学性能分析手段主要有一维声传递矩阵法[1, 2]、三维有限元法[3, 4]、三维边界元法[5, 6]和一维有限体积法[7, 8]等。由于一维声传递矩阵法由于分析精度不佳,且数学推导较为复杂,目前应用较少。有限元和边界元法与现有一维有限体积法分析软件(例如Gamma Technology GT-Power,Ricardo Wave 等)相比,虽然在分析精度方面有优势,但由于有限元或边界元法需要三维CAD 建模、划分有限元/边界元网格、设置分析边界条件、提取计算结果等繁琐步骤,不但操作不便、而且分析时间过长,因此没有在企业开发消声器过程中得到大量应用。
因此开发一套具有快速参数化建模、自动网格划分、自动设置边界条件、自动提取计算结果等功能的自动化、高效率的基于有限元或边界元的消声器设计分析系统,对于提高企业、研究机构在消声器声学分析上的效率和正确性,具有极大的意义。
本文针对现有分析过程的不足,并结合消声器的特点和企业实际需求,基于LMS Virtual.Lab(版本9a)的有限元分析功能,开发出自动化、高效的消声器设计分析系统,并将该系统应用于消声器开发和改进中,取得了较好的效果。
2. 关键技术研究
2.1 消声器快速参数化建模技术
消声器的内部结构复杂,既有由隔板分割的各个腔体,又有各种穿孔和管道。目前的方法是利用三维CAD 软件(如UG、CATIA 等)进行建模从而建立分析对象,而随着分析的深入,需要经常调整模型的结构和各种参数。这样不但费时费力,且容易出现设计错误甚至干涉。因此需要根据消声器模型的特点,将消声器进行抽象,并利用3D 可视化技术实现消声器的快速建模。
本文将消声器抽象为腔体截面、腔体、隔板、直管、弯管、穿孔(板)、穿孔(管)、吸声材料等部件,进一步定义这些部件的各项属性,便可将消声器抽象为如图 1 所示的抽象模型。
当抽象模型建立完成后,我们可以通过逻辑模型中的设计参数,自动建立有限元分析需要的流体模型,即由消声器腔体所包围,隔板、管道所分割的腔体。为保证空气模型能真实反映消声器内部管道结构,合理定义建模顺序是非常有必要的,如果建模顺序不合理,前面建立的结构模型容易被后建的结构替代或影响,从而使实体模型与用户的设计目标不一致。经过总结和验证,如图 2 所示的建模顺序(按箭头所示方向)较为合理,能保证逻辑模型和物理模型的统一。
OLE Automation(简称Automation)是Windows 应用程序之间相互操纵的一种技术。它使用了Microsoft的COM(Component Object Model)技术,为软件创建一个标准的接口,让其它的应用程序通过Automation的机制,以对象的方式来调用这个软件的功能。
在汽车排气消声器设计或改进过程中,迅速的预测目标消声器的传声损失(Sound Transmission Loss),能够为进一步的分析设计提供可靠的依据、指导,因此对提高消声器设计水平具有重要的意义。目前常用的消声器的声学性能分析手段主要有一维声传递矩阵法[1, 2]、三维有限元法[3, 4]、三维边界元法[5, 6]和一维有限体积法[7, 8]等。由于一维声传递矩阵法由于分析精度不佳,且数学推导较为复杂,目前应用较少。有限元和边界元法与现有一维有限体积法分析软件(例如Gamma Technology GT-Power,Ricardo Wave 等)相比,虽然在分析精度方面有优势,但由于有限元或边界元法需要三维CAD 建模、划分有限元/边界元网格、设置分析边界条件、提取计算结果等繁琐步骤,不但操作不便、而且分析时间过长,因此没有在企业开发消声器过程中得到大量应用。
因此开发一套具有快速参数化建模、自动网格划分、自动设置边界条件、自动提取计算结果等功能的自动化、高效率的基于有限元或边界元的消声器设计分析系统,对于提高企业、研究机构在消声器声学分析上的效率和正确性,具有极大的意义。
本文针对现有分析过程的不足,并结合消声器的特点和企业实际需求,基于LMS Virtual.Lab(版本9a)的有限元分析功能,开发出自动化、高效的消声器设计分析系统,并将该系统应用于消声器开发和改进中,取得了较好的效果。
2. 关键技术研究
2.1 消声器快速参数化建模技术
消声器的内部结构复杂,既有由隔板分割的各个腔体,又有各种穿孔和管道。目前的方法是利用三维CAD 软件(如UG、CATIA 等)进行建模从而建立分析对象,而随着分析的深入,需要经常调整模型的结构和各种参数。这样不但费时费力,且容易出现设计错误甚至干涉。因此需要根据消声器模型的特点,将消声器进行抽象,并利用3D 可视化技术实现消声器的快速建模。
本文将消声器抽象为腔体截面、腔体、隔板、直管、弯管、穿孔(板)、穿孔(管)、吸声材料等部件,进一步定义这些部件的各项属性,便可将消声器抽象为如图 1 所示的抽象模型。
图1 消声器的抽象模型
当抽象模型建立完成后,我们可以通过逻辑模型中的设计参数,自动建立有限元分析需要的流体模型,即由消声器腔体所包围,隔板、管道所分割的腔体。为保证空气模型能真实反映消声器内部管道结构,合理定义建模顺序是非常有必要的,如果建模顺序不合理,前面建立的结构模型容易被后建的结构替代或影响,从而使实体模型与用户的设计目标不一致。经过总结和验证,如图 2 所示的建模顺序(按箭头所示方向)较为合理,能保证逻辑模型和物理模型的统一。
图 2 消声器流体模型建模顺序
OLE Automation(简称Automation)是Windows 应用程序之间相互操纵的一种技术。它使用了Microsoft的COM(Component Object Model)技术,为软件创建一个标准的接口,让其它的应用程序通过Automation的机制,以对象的方式来调用这个软件的功能。
图 3 LMS Virtual.Lab Automation 对象集
图 4 分析设置对象AnalysisSet 的获取流程之后通过Update 方法分析实例对象实现传声损失的分析计算。计算完毕后通过ExportToFile 方法将传声损失结果导出并图形化显示。全部
LMSVirtualLab汽车排气消声器快速分 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)