基于FPGA的双路低频信号发生及分析仪
设定门限时,频率即被系统提取出来,同时进入幅度提取过程。在幅度提取阶段,通过算法找出幅值大小,该值即为原信号的幅度。具体实现流程如图9所示。
5系统调试和测试
在系统硬件焊接完成及软件功能仿真、下载成功之后。接下来对整个系统进行调试,其过程如下:将信号产生部分的2个输出信号接入求和电路的输入端,再将求和后的信号输入频谱分析仪,最后将频谱信号送入示波器显示。观察示波器显示谱线与设置是否相符,并不断修正元器件参数和软件的的算法,以提高该系统的精度,避免理论与实际产生的偏差。
目前,本系统信号产生部分可以实现双路信号均可在正弦波、三角波、锯齿波、矩形波之间任意选择,频率可单独预制,范围为1~9 999 Hz,步进值10 Hz.幅度可单独预置,范围为0.1~7.5 V,步进值100 mV.可产生两路频率相同,相位差可调的正弦波信号,相位差预制范围为o~360.,步进值10产生的矩形波的占空比能在1%~99%预制,步进值1%.图10为本系统产生的低频信号,通道1是产生的三角波信号,通道2是产生的正弦波信号。
信号叠加电路能对信号发生器输出的两路频率和相位不同的信号进行合成。分析仪部分能对叠加之后的信号进行频域分析,并在显示器上显示叠加信号频谱图。分析仪能分别显示两路原正弦信号的幅度与频率。图11是经过FFT处理过的频谱图。
经过测试,该系统稳定可靠,达到了设计要求。其中低频信号产生部分测试结果如表1所示,频谱分析部分测试结果如表2所示。
6 结论
该双路低频信号发生及分析仪由信号产生模块、信号叠加模块和信号分析模块组成。运用硬件描述语言对FPGA进行设计,在完成了能产生可调幅度频率等参数的双路低频信号频率精度和幅度精度高于一般的DDS集成电路,并有调整矩形波占空比和正弦波相位差的功能。同时实现了对叠加后信号的频谱分析和频率幅度提取,可以直观地观察产生的双路信号叠加后的频谱,并得到相应参数,操作简单,易于实现。可以用作简单的信号产生器,信号叠加器和频谱分析仪。
FPGA双路低频信号分析 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)