基于直方图的图像增强算法(HE、CLAHE、Retinex)之(一)
时间:02-23
来源:互联网
点击:
for i = 1:256
ProbPixel(i) = NumPixel(i) / (height * width * 1.0);
end
CumuPixel = cumsum(ProbPixel);
CumuPixel = uint8(255 .* CumuPixel + 0.5);
for i = 1:height
for j = 1: width
V(i,j) = CumuPixel(V(i,j));
end
end
V = im2double(V);
hsvImg(:,:,3) = V;
outputImg = hsv2rgb(hsvImg);
imshow(outputImg);
最后,来对比一下不同方法对彩色图像的处理效果。下面的左图是采用R、G、B三分量分别处理得到的结果。右图是对HSV空间下V通道处理之结果。显然,右图的效果更理想,而左图则出现了一定的色彩失真。事实上,对彩色图像进行直方图均衡是图像处理研究领域一个看似简单,但是一直有人在研究的话题。我们所说的对HSV空间中V分量进行处理的方法也是比较基本的策略。很多相关的研究文章都提出了更进一步的、适应性更强的彩色图像直方图均衡化算法。有兴趣的读者可以参阅相关文献以了解更多。
分别处理R、G、B三个分量之结果 转换到HSV空间后处理V分量
这是本系列文章的第一篇,在下一篇文章中我们将要讨论CLAHE算法,也就是限制对比度的自适应直方图均衡算法。
- 一种用于CMOS图像传感器集成ADC的性能测试系统(03-18)
- 基于直方图的图像增强算法(HE、CLAHE、Retinex)之(二)(02-23)
- 基于SDI接口的实时图像增强显示系统(10-29)
- 基于FPGA的彩色图像增强系统设计(10-26)
- 基于Matlab的图像增强与复原技术在SEM图像中的应(04-15)
- 基于FPGA的图像增强视频处理系统(04-09)