微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 双目摄像技术分析--突破光学与尺寸的极限

双目摄像技术分析--突破光学与尺寸的极限

时间:06-03 来源:互联网 点击:

性物体。这个问题的解决方法在实际应用中很有用,因为它们允许我们根据摄像机估计图像中已知物体的位置,方向,缩放,尽管物体身上的图像特征有很多不确定性。这类算法能够和世界产生作用,在系统中特别有用。例如,如果我们希望移动一个物体到特定位置,或者抓住它,根据摄像机知道它的数据真的特别有用。我们使用相同的方法来解决3D物体到3D物体的配准,方法重复:找到一个群;恢复转换关系;对全部源实施转换;然后对源于目标的相似度打分。最后我们输出得分最好的转换结果。更进一步,如果最好的转换关系得分较好,那么物体就在那儿(那儿就是估计出的位姿);如果不好,他就不是(不在那儿)。

由多个基于某些几何结构的标记组成,而是基于几何结构的旋转平移及缩放版的标记组成。我们想得到实际的旋转,平移及缩放。通常该问题涉及很多中的外点,因为我们不知道特征是否真的来自该物体。几乎所有的标记都是点或者线段;对于,这些由物体的几何模型决定,而对于,则来自边缘点或者边缘点的拟合线(我们能使用Chapter 10的这些机制获得这些线)(钓寒江雪翻译)。这个案例有两个不同的特性。我们不能估计全部的转换参数(通常也无关紧要),且它也很难得到令人满意的源与目标的相似度评分。 

有很多方法可以估计转换参数。细节依赖于我们是否标定摄像机,以及我们使用了何种摄像机模型。在最简单的案例中,我们使用了垂直的摄像机,标定基于未知的尺度,沿着Z轴俯视摄像机坐标系。我们无法估计3D目标的深度,因为改变深度不改变图像。我们不能独立于摄像机的缩放尺度判定物体的尺度,因为同时改变这两个参数能得到相同的图像。例如,我们放大物体一杯,同时缩小摄像机的像元,我们得到的图像点具有相同的坐标值。因此,我们不能影响上述搜索过程背后的因果关系。例如,我们建立源与目标的正确的映射关系,然后,源标记将停止在靠近或者在目标标记的上方。这意味着使用了上述RASANC风格的方法。相似地,如果我们提供了准确的转换参数(我们能设置摄像机缩放参数为1),我们就可以估计深度。

在单个垂直摄像机的案例中,基于未知缩放值得标定,三个映射点对已经足够估计旋转量。两个可观测的平移及缩放(参考联系,给出了另一个帧群组)。在大部分应用中,深度在物体间的变换相对于物体的深度要小的多。这意味着,一个透视摄像机能够能被弱透视变换近似模型来近似。这等同于单个垂直摄像机,标定到一个未知的尺度。如果摄像机的尺度已知,也就可以恢复出无图的深度。 

Figure 13 一个平面物体被配准到图像。左图中,一个物体的图像;中图中,一个图像中包含物体的两个实例,及其他材料(聚类中常见的例子)。特征点被检测了,且两个群组-在这个案例中,三点集-被搜索;每个映射给出了一个从模型到图像的变换。满意的映射对齐了很多模型边缘点与图像边缘点,在左图中,这是为什么这个方法有时候被称为“对齐”。这个图像来自该主题的早期的论文,但是受到当时落后的再生技术的影响。这个图像最早作为Figure 7发表在“Object recognition using alignment,” D.P. Huttenlocher and S. Ullman, Proc. IEEE ICCV, 1986. c IEEE, 1986.

验证: 比较转换与玄然后的源图与目标图

实际应用中,用来搜索转换关系的RANSAC-风格的搜索算法主要的难点在于配准3D目标与一个图像,一个好的评分方法比较难以得到(钓寒江雪翻译)。计算评分函数的方法是直接的,如果我们启用渲染,一个通用目的用于根据模型生成图像的方法的描述,包含所有的从绘线到给图像物理地精确地着色工作。我们获得估计得转换模型,应用到模型,然后使用摄像机模型渲染转换后的物体模型。我们实施渲染,并与图像进行比较。难点在于比较方式(这决定我们需要渲染什么)。

我们需要一个能够说明所有已知图像迹象的评分函数。这要能包含难以确定确定型的标记(角点或者边缘点),或者图像纹理的迹象。如果我们知道所有的物体在其之下被观测的光照条件。我们可能可以使用像素亮度(实际条件下,这几乎行不通)。通常,关于光照我们所能知道全部就是亮度足够时,我们能找到一些标记,这也是为什么我们有配准假设需要检验。这意味着这些比较被要求在在光照变换条件下是鲁棒的。显然,实践中,最重要的检验是渲染物体的轮廓,然后比较其边缘点。

一个自然检验方法是根据摄像机模型叠加物体的轮廓边缘到图像,然后根据这些点与真实图像边缘点的比较对假设模型进行评分,通常的评分是靠近的实际的边缘点

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top