卡尔曼滤波介绍与原理讲解
首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=AX(k-1|k-1)+BU(k)………..(1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=AP(k-1|k-1)A’+Q(2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’
表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))(3)
其中Kg为卡尔曼增益(KalmanGain):
Kg(k)=P(k|k-1)H’/(HP(k|k-1)H’+R)(4)
到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k)H)P(k|k-1)(5)
其中I为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。
卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5个基本公式。根据这5个公式,可以很容易的实现计算机的程序。
下面,我会用程序举一个实际运行的例子。。。
4.简单例子
(ASimpleExample)
这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。
根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们建的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:
X(k|k-1)=X(k-1|k-1)………(6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1)+Q………(7)
因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-X(k|k-1))………(8)
Kg(k)=P(k|k-1)/(P(k|k-1)+R)………(9)
P(k|k)=(1-Kg(k))P(k|k-1)???(10)
现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。
为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着 卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选 了X(0|0)=1度,P(0|0)=10。
该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。
××××××××××××××××××
附matlab下面的kalman滤波程序:
clear
N=200;
w(1)=0;
w=randn(1,N) //产生一个均值为0,方差为1的1*n维向量(白噪声、正态分布而非均匀分布)
x(1)=0;
a=1;//即A
fork=2:N; //FOR
x(k)=a*x(k-1)+w(k-1); //200个X(k)赋值,初始值?
end //END
V=randn(1,N);
q1=std(V); //标准差
Rvv=q1.^2;
q2=std(x);
Rxx=q2.^2;
q3=std(w);
Rww=q3.^2;
c=0.2;
Y=c*x+V;
p(1)=0;
s(1)=0;
fort=2:N; //FOR
p1(t)=a.^2*p(t-1)+Rww;
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv); //增益?
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1)); //结果?
p(t)=p1(t)-c*b(t)*p1(t);
end //END
t=1:N; //循环?
plot(t,s,'r',t,Y,'g',t,x,'b'); //RGB? s,Y,x都是向量
- 无线通信网优覆盖系统的发展及数字多点分布系统介绍(05-15)
- PQI USB 3.0 COB专利技术介绍(01-29)
- RFID技术在农产品流通环节监控中的应用介绍(11-04)
- 螺旋线行波管收集极电源稳压的取样方法介绍(10-07)
- 无线自组网技术VBee及其应用实例介绍(09-19)
- 船用仪表EMC与罗经安全距离介绍(09-11)