微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > FPGA系统设计原则和技巧之:FPGA系统设计的3种常用技巧

FPGA系统设计原则和技巧之:FPGA系统设计的3种常用技巧

时间:06-05 来源:互联网 点击:

9.2FPGA系统设计的3种常用技巧

9.2.1乒乓操作技巧

1.乒乓操作的原理

乒乓操作是FPGA设计中最常用的一种数据缓冲方法,简单而且实用,其原理示意图如图9.5所示。

图9.5乒乓操作原理

输入的数据经过选择开关后,分别进入缓冲模块1和缓冲模块2。当数据写入缓冲模块1的时候,数据处理单元从缓冲模块2读取数据进行处理;当数据写入缓冲模块2的时候,数据处理单元从缓冲区模块1读取数据进行处理。

这样做的目的是给数据处理单元赢得更多的处理时间,避免因为数据处理时无法持续接收而丢失有效数据。因此,乒乓操作适合那些数据处理以帧为单位,而且每帧的处理最长时间小于帧周期的情况。

2.乒乓操作的特点

(1)乒乓操作的最大特点是无缝缓冲与处理。

通过“输入数据选择开关”和“输出数据选择开关”按节拍、相互配合的切换,将经过缓冲的数据流没有时间停顿地送到“数据处理单元”,被运算与处理。

把乒乓操作模块当作一个整体,站在这个模块的两端看数据,输入数据流和输出数据流都是连续不断的,没有任何停顿。因此非常适合对数据流进行流水线式处理,常常被应用于流水线式算法。

(2)乒乓操作的第二个特点是节约缓冲区空间。

比如在WCDMA基带应用中,1帧(Frame)是由15个时隙(Slot)组成的。有时需要将1整帧的数据延时一个时隙后处理,比较直接的办法是将这帧数据缓存起来,然后延时1个时隙,进行处理。这时缓冲区的长度是1整帧数据长,假设数据速率是3.84Mbit/s,1帧长10ms,则此时需要缓冲区长度是38400bit。

如果采用乒乓操作,只需定义两个能缓冲1个slot数据的RAM(单口RAM即可)。当向一块RAM写数据的时候,从另一块RAM读数据,然后送到处理单元处理。此时,每块RAM的容量仅需2560bit即可,2块RAM加起来也只有5120bit的容量。

3.乒乓操作的灵活应用

巧妙地运用乒乓操作,还可以达到用低速模块处理高速数据流的效果。

如图9.6所示,数据缓冲模块采用了双口RAM,并在DPRAM后引入了一级处理模块。这个数据预处理根据需要可以是各种数据运算。比如在WCDMA设计中,对输入数据流的解扩、解扰、去旋转等。

图9.6使用低速处理模块处理高速数据流

假设端口A的输入数据流的速率为100Mbit/s,乒乓操作的缓冲周期是10ms。我们下面一起分析一下各个节点端口的数据速率。

输入数据流A端口处数据速率为100Mbit/s,在第1个缓冲周期10ms内,通过“输入数据选择开关”,从B1到达DPRAM1。B1的数据速率也是100Mbit/s,在10ms内,DPRAM1要写入1Mbit/s数据。

同理在第2个10ms,数据流被切换到DPRAM2,端口B2的数据速率也是100Mbit/s,DPRAM2在第2个10ms被写入Mbit/s数据。周而复始,在第3个10ms,数据流又切换到DPRAM1,DPRAM1被写入1Mbit/s数据。

仔细分析一下,就会发现到第3个缓冲周期时,留给DPRAM1读取数据并送到“处理模块1”的时间一共是20ms。

(1)首先在第2个缓冲周期,向DPRAM2写数据的10ms内,DPRAM1可以进行读操作。

(2)其次在第1个缓冲周期的第5ms起(绝对时间为5ms时刻),DPRAM1就可以边向500Kbit/s以后的地址写数,边从地址0读数,到达10ms时,DPRAM1刚好写完了1Mbit/s数据,并且读了500Kbit/s数据,这个缓冲时间内DPRAM1读了5ms的时间。

(3)另外在第3个缓冲周期的第5ms起(绝对时间为35ms时刻),同理可以边向500Kbit/s以后的地址写数,边从地址0读数,又读取了5个ms,所以截止DPRAM1第一个周期存入的数据被完全覆盖以前,DPRAM1最多可以读取了20ms时间,而所需读取的数据为1Mbit/s,所以端口C1的数据速率为:1Mbit/s/20ms=50Mbit/s。

因此“处理模块1”的最低数据吞吐能力也仅仅要求为50Mbit/s。同理“处理模块2”的最低数据吞吐能力也仅仅要求为50Mbit/s。换言之,通过乒乓操作,“处理模块”的时序压力减轻了,所要求的数据处理速率仅仅为输入数据速率的1/2。

通过乒乓操作实现低速模块处理高速数据的实质是:通过DPRAM这种缓存单元,实现了数据流的串并转换,并行用“处理模块1”和“处理模块2”处理分流的数据,是面积与速度互换原则的有一个体现。

9.2.2串并/并串转换技巧

串并转换是FPGA设计的一个重要技巧,从小的着眼点讲,它是数据流处理的常用手段;从大的着眼点讲,它是面积与速度互换思想的直接体现。

串并转换的实现方法多种多样,根据数据的排序和数量的要求,可以选用寄存器、RAM等实现。如图9.5所示的乒乓操作举例,就是通过DPRAM实现了数据流的串并转换,而

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top