基于仿真的嵌入式诊断设计方法
为及时、准确地检测隔离内部故障,支持新一代飞机视情维修和自主式保障的实现,提高飞机的保障性和经济可承受性,必须在装备研制一开始就综合考虑整体诊断策略的设计,从设计的源头保证良好的测试性。因此,在设计初期,仿真分析作为设计辅助手段显得尤为重要。目前,基于仿真的诊断设计研究对实际诊断设计的指导多停留在理论阶段,缺乏工程应用的途径及案例,使得先进的诊断策略设计技术与工程实际脱节。因此,如何将仿真分析结果有效应用于工程实际,建立起二者之间的桥梁,是诊断设计中亟待解决的问题。笔者介绍了一种基于仿真的嵌入式诊断设计方法,并基于案例对该方法的有效性和实用性进行了验证。该方法为仿真分析得到的最优诊断策略在嵌入式诊断设计中的有效落实提供了思路和途径,实现了建模仿真分析工作对实际工程设计的有效指导,可用于指导产品实际诊断设计。
1 技术原理及流程
基于仿真的嵌入式诊断设计方法基于诊断对象的故障传递关系、故障模式信息、测试点信息、功能框图等输入,以测试性模型和EDA功能仿真模型为基础。一方面,以测试性建模分析为手段,获得诊断逻辑/标准,明确各故障模式的检测隔离判据,将其作为诊断推理的依据,即得到故障一测试相关性矩阵;另一方面,以功能仿真分析和故障注入仿真分析为辅助,确定需获取的信号以及信号采集处理方法,进一步获得一种全新的故障一信号一测试相关性矩阵,最终形成诊断对象的嵌入式诊断策略。依据获得的诊断策略,可以进行诊断算法、程序及电路等的设计,从而在实际应用时根据相关参数的监控结果,得到所需的诊断结果,实现机内诊断。具体的诊断设计方法实施流程如图1所示。
图1 基于仿真的诊断设计方法实施流程
2 案例分析
以某型号飞机航电系统中的语音处理单元的机内诊断(BIT)设计为例,详细介绍所述的基于仿真的嵌入式诊断设计方法。其功能框图和组成结构如图2所示。
图2 诊断对象功能框图
收集诊断对象的设计资料、技术说明、电路原理图和功能框图等。依据相关资料,分析诊断对象的功能、特性。依据产品的可靠性分析结果、产品的信号流图,确定产品的故障模式信息及故障传递关系;同时,基于产品物理结构和测试处理能力,初步选定产品的可用测试点。如表1所示。
表1 故障模式分析表
2.1 建立故障一测试相关性矩阵
确定故障一测试相关性矩阵的过程即建立诊断逻辑/判据的过程。
(1)产品测试性模型建模。
依据产品的功能框图,结合故障模式信息、故障传递关系等,基于产品可用测试点,建立起产品的初步测试性模型。笔者选用TADS软件实现案例系统的模型建立,其模型为分层结构的信号流模型,如图3所示。
图3 案例系统的测试性模型
(2)基于建立的测试性模型,依据产品的诊断要求和设计约束条件,进行测试性分析。
①分析故障模式与测试点测试结果的关系,生成相关性矩阵。利用TADS软件,对建立的模型执行静态分析和测试性分析,得到模型的故障一测试相关性矩阵(D矩阵)。
②优化测试点布局和相关性矩阵,得到诊断逻辑/判据。产品的最优诊断策略以测试点的优选结果为基础。因此,应在满足测试性指标的基础上,识别冗余测试,进一步隔离模糊组,实现对相关性矩阵的优化。在筛选去除未选用测试后,即可得到该诊断对象的诊断逻辑/判据。如表2所示。
表2 优化后的故障一测试相关性矩阵
2.2 确定诊断用信号/参数集
为实现故障一测试相关性矩阵中测试的详细设计,通过EDA电路功能仿真及故障仿真,获取诊断对象的正常状态及各故障状态下的信号表征,得到为实现诊断所需的信号/参数集,并对其进行一定的优化,确定用于诊断的信号/参数集。
(1)建立产品EDA电路功能模型和EDA故障模型,仿真获取状态信息。
笔者使用仿真分析软件Saber作为EDA建模分析工具,根据所述的建模手段及方法,依据案例电路功能原理,建立其电路功能模型,并进行仿真分析,可得到产品正常工作状态下的电路各信号/参数状态及特征,如图4所示。基于故障模型建模方法,为故障一测试相关性矩阵中的故障模式建立故障模型。在本案例的典型故障模式模型和仿真结果参见文献。将故障模型置于电路功能仿真环境中,进行故障注入仿真分析,得到产品各故障状态下的信号/参数特性。案例电路各故障模式的故障状态如表3中相应列所示。
(2)确定支持诊断所需采集的信号/参数。
根据诊断对象的故障状态、电路特性和诊断需求,确定诊断所需信号/参数集,其原则如下:
①
嵌入式 相关文章:
- Linux嵌入式系统开发平台选型探讨(11-09)
- 基于Winodws CE的嵌入式网络监控系统的设计与实现(03-05)
- 嵌入式系统实时性的问题(06-21)
- 嵌入式实时系统中的优先级反转问题(06-10)
- 嵌入式Linux系统中MMC卡驱动管理技术研究(06-10)
- FPGA的DSP性能揭秘(06-16)