微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 散射方法测量嵌入式SiGe间隔结构

散射方法测量嵌入式SiGe间隔结构

时间:02-27 来源:互联网 点击:

      1. M分析。分析表明,这两个芯片的间隔层厚度之差为4.4nm。由于波长在DUV范围内的光谱有更多的差异性,DUV光学元件对NFET间隔层厚度的改变比UV光学元件更敏感。事实上,这一灵敏度的变化发生在DUV与UV的波长跃迁处。DUV/UV的灵敏度比值为3.7,这意味着当测量这些厚度的变化时,DUV的灵敏度是UV的3.7倍。

        图5显示了不同淀积条件下,两个波段对PFET间隔层厚度变化的灵敏度。TEM的分析表明间隔层厚度之差为4.6nm。DUV光学元件对厚度的变化更敏感,在DUV/UV波长跃迁区,灵敏度开始再次发生变化。灵敏度比率表明,对PFET间隔层厚度的变化而言,DUV的灵敏度是UV的4.8倍。

        图6显示了两个芯片在不同的过刻蚀量以及不同的PFET过填充量条件下的比较。晶圆组中其它芯片的TEM结果表明,这两个芯片的过填充量差约为3nm或更少。再次证明了DUV更为敏感,其灵敏度变化大约发生在DUV与UV的波长跃迁区,灵敏度比率为1.6。

        从6枚实验晶圆中收集短期动态重复性(STDR)数据。分别在每枚晶圆中选择9个芯片,并对每个芯片循环测量10次,以此来确定STDR数据。对每个芯片可进行重复性测量,其平均值便是晶圆的STDR数据,然后再将这个平均值转换成一个3σ值。图7显示了STDR的结果。结果表明,NGP间隔层测量的STDR比SCD间隔层测量的STDR约低2.5至3倍。而对于PFET过填充量,NGP的STDR较SCD约降低了2倍。

        准确性
        与从光谱保真度方面来评估准确性的方法不同,本实验采用总量测不确定度(TMU)分析方法,从最终测量的参数间隔层厚度和PFET过填充量方面来评估准确性,TEM作为参考测量系统 (RMS)。对于NFET结构,对每个栅极结构的TEM 图像上4个不同位置进行了间隔层厚度测量,每个位置测量2次。而每个散射测量样本共对3张栅极图像进行了测量,因此每个散射测量样本总共可收集12个厚度测量数据。而对于PFET结构,可在每张栅极图片上的间隔层分散选择10个点进行间隔层厚度测量,每个点测量5次。每张栅极图片选择2个点进行过填充量的测量。这样,每个散射样本共对3张PFET栅极图像进行了测量,因此每个样本一共可以收集30个间隔层厚度和6个过填充量的测量数据。

        在散射样本上进行大量的TEM取样,成本较高,难度也较大。因此TEM取样仅限于每个散射测量样本的中心位置,没有考虑样本之间在厚度和过填充量上的差异性。首先对NFET间隔层厚度的准确性进行评估。图8为SCD和NGP在测量间隔层厚度时TMU的差异。可以看出NGP TMU值得到了一定的改进:从1.48nm降至1.21nm,减少了18%。必须指出的是,由于取样有限,TMU值可能会存在较大的不确定性,所以间隔层厚度TMU的改进不是决定性的。

        接下来对PFET间隔层厚度的准确性进行评估,其评估结果如图9所示。在该评估中,如上所述,NGP可以充分利用UV和DUV各自的波长范围优势,但这两种模式仍然使用相同的固定和浮动模型参数。结果表明,与SCD相比,NGP TMU得到了显著的改进:TMU从2.44nm 降至1.31nm,减少了46%。虽然TMU的误差范围较大,但是与NFET相比,其误差范围重叠的情况要少很多。

        最后对PFET过填充量的准确性进行评估,评估结果如图10所示。NGP实现了少许改进,TMU从3.08nm降至2.78nm,减少了10%,过填充量值的变化幅度很小。此外,由于边界相关性较为模糊,因此难以从TEM 图片中对其进行准确测量。

        结论
        薄间隔层的特性描述对先进设备的监控尤为重要。与现有SpectraCD200平台 (SCD) 相比,新一代硬件平台NGP可提高45nm节点薄间隔层的测量质量。NGP可通过其先进的光谱椭圆偏光法(SE)光学元件以及低至150nm的更广泛的波长范围来提高测量质量。结果显示,NGP的短期动态重复性(STDR)较SCD降低2.5~3倍,TMU则提高了18%。与UV波长范围相比,DUV波长范围对间隔层厚度变化的灵敏度提高3.7倍。

        PFET结构通常用于研究NGP如何提高间隔层厚度和过填充量的测量质量。NGP拥有更广泛的波长范围及先进的光学元件,可充分利用该模型以展示其组合优势。虽然模型使用了不同的散射文件和波长范围,但它们共享相同的固定与浮动建模参数。对于PFET结构,DUV波长对间隔层厚度变化的灵敏度较UV波长提高了4.8倍;DUV波长对过填充量的灵敏度较UV波长则提高了1.6倍。通过使用NGP,既可将过填充量的STDR降低2倍,也可使间隔层厚度的STDR降低3倍。此外,还可将间隔层厚度的TMU提高46%。虽然这两个系统的置信区间有一定的重叠,但重叠部分非常小,因此可以确定NGP有很大的改进。虽然过填充量的TMU提高了10%,但由于采样的局限性,误差范围较大。

        NGP的先进SE光学元件能降低光与电噪声,因此可实现STDR的显著

  • Copyright © 2017-2020 微波EDA网 版权所有

    网站地图

    Top