地质雷达在水利工程质量检测中的应用
1 前言
地质雷达作为近十余年来
既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。
而界面的反射系数为:
式中Z为波阻抗,其表达式为:
显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。
对于雷达波常用频率范围(25~1000MHz),一般认为σωε,因而反射系数r可简写成:
上式表明反射系数r主要取决于上下层介电常数差异。
应用雷达记录的双程反射时间可以求得目的层的深度H:
式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(0.3m/ns);εr为目的层以上介质相对介电常数均值。
3 工程概况
北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:1.5~1:2.0,外坡相对较缓为1: 2.0~1: 2.5。
堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。介质构成复杂多变,分布不均,且处于包气带中,极为干燥。
堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约0.7~2.0m。
地下水位埋深(自地表计):卢沟桥附近约20.0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约2.0m。
永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm――原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为3.0~5.0m,外铺8.0m的铅丝石笼护底。这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。
4 测试技术及资料处理
为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。
外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为0.6m。实测采用剖面法,且收发天线方向与测线方向平行。记录点距为0.2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为0.08~0.10m/ns,表层浆砌石的雷达波速为0.10~0.12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为0.10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。
雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理等,旨在优化数据资料,突出目的体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。
5 成果分析
地质雷达资料的地质解释是地质雷达探测的目的。由数据处理后的雷达图像,全面客观地分析各种雷达波组的特征(如波形、频率、强度等),尤其是反射波的波形及强度特征,通过同相轴的追踪,确定波组的地质意义,构制地质――地球物理解释模型,依据剖面解释获得整个测区的最终成果图。
地质雷达资料反映的是地下地层的电磁特性(介电常数及电导率)的分布情况,要把地下介质的电磁特性分布转化为地质分布,必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质――地球物理模型,才能获得正确的地下地质模式。
雷达资料的地质解释步骤一般为:
⑴ 反射层拾取
根据勘探孔与雷达图像的对比分析,建立各种地层的反射波组特征,而识别反射波组的标志为同相性、相似性与波形特征等。
⑵ 时间剖面的解释
在充分掌握区域地质资料,了解测区所处的地质背景的基础上,研究重要波组的特征及其相互关系,掌握重要波组的地质特征,其中要重点研究特征波的同相轴的变化趋势。特征波是指强振幅、能长距离连续追踪、波形稳定的反射波。同时还应分析时间剖面上的常见特殊波(如绕射波和断面波等),解释同相轴不连续带的原因等。
图1 左堤9+638~9+721护险段坡脚雷达图像(a)和地质解释图(b)
根据上述解释原则,对雷达图像进行地质解释如下:
图1(a)为左堤9+638~9+721护险段坡脚雷达测试图像。此图由浅至深解释为:①第一同相轴(4ns)为雷达波初始信号;②第二同相轴和第三同相轴(12ns,层厚约0.40m)呈现
- 基于Virtex5高性能FPGA的脉冲激光测距系统设计(01-02)
- 三种测风设备测量精度的对比分析(03-26)
- 用于雷达测试和验证的自动化测试设备(05-15)
- 用于系统级测试和PCB配置的高级拓扑结构(05-16)
- 使用LabVIEW重写电子战争模拟程序(06-14)
- 基于虚拟仪器的雷达信号模拟系统(10-23)