基于光纤导光的数字全息微形变测量系统
在全息再现计算中,首先采用Tukey窗对全息图进行切趾处理,以减小边缘衍射引起的光场起伏。然后,采用空频域滤波方法去除零级项和共轭像对原始像的影响,即对切趾后的全息图进行傅里叶变换得到其频谱,进而选取原始像对应的频谱分量,最后通过逆傅里叶变换得到仅包含原始像信息的全息图。接着,采用菲涅尔再现算法得到物光场的复振幅分布,即反映物体形貌的相位分布。
图4给出了实验结果。其中,图4(a)和图4(d)为钢板形变量的包裹相位图,图4(a)为较小形变时包裹相位图,图4(d)为较大形变时包裹相位图。从图可以看出,实验得到的相位差图条纹清晰、信噪比高,并且包裹图像条纹与形变物面的形变形状、形变位置、形变大小与实际相符,说明本文设计的基于光波导的光路结构完全可行。图4(b)和图4(e)分别是进行相位解包裹后的相位图,图4(c)和图4(f)分别为图4(a)和图4(d)横向中心线处对应的解包裹相位值。需要指出的是,针对激光数字全息得到的包裹相位图,枝切法解包裹得到的相位形变量精度最高,最小梯度加权最小二乘法的形变形貌恢复效果最好,因此实验中采用枝切法相位解包裹,然后经高斯低通滤波,得到较精确的形变量值。
表1给出了实验测量形变相位差结果与传统数条纹法结果进行的比较,实验得到的解包裹相位差值恰好落在真实相位差值范围之内。实验结果表明,本文提出的基于光纤导光的激光数字全息微形变测量系统能够得到高信噪比的包裹相位差图,即高精度的测量结果,并且系统结构简单、紧凑、稳定性好。
3 结论
本文设计并搭建了基于光纤导光的数字全息干涉测量系统,采用1×2单模光纤耦合器实现分光产生照明光和参考光,并在照明光路和参考光路中分别采用短焦距和长焦距的准直透镜进行光束扩束,使得物参光在记录面上的强度比接近1:1,从而获得高信噪比的数字全息图。
采用基于数字全息的双曝光法对波长量级微形变钢板进行形变测量,通过数字全息记录、再现和形变包裹相位差图解包裹,得到形变相位差值。实验结果表明,基于光纤导光的数字全息干涉测量系统能够获得高信噪比的相位差图,进而得到高精度的物体微小形变量。因此,本文建立的基于光纤导光的数字全息干涉测量系统不仅体积小、重量轻、结构紧凑、稳定性好,而且测量过程简单且精度高。
- 消耗型光纤高温测量仪的研究(07-01)
- 变压器油温测量及光纤通信系统的设计(03-10)
- 基于光纤光栅的油井压力/温度监测方案(03-21)
- 基于虚拟仪器的光纤电流感测系统的设计 (10-09)
- 如何提高G652D光纤宏弯损耗测试效率(10-23)
- 光纤光栅传感器在水布垭面板坝安全监测中的应用(01-11)