微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于TDC-GP21的完美超声波热量表设计

基于TDC-GP21的完美超声波热量表设计

时间:06-21 来源:互联网 点击:

表开发过程中克服很多困难。

一个应用TDC-GP21设计完整热量表是非常简单的,下面是一个超声波热量表原理图的例子:


  如上图所示,给我们最直观的印象就是,整个测量系统所需要的外部元器件非常少,整个结构很紧凑,除了所必需的简单单片机
单片机

单片机是单片微型计算机(Single-Chip Microcomputer)的简称,是一种将中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)采用超大规模集成电路技术集成到一块硅片上构成的微型计算机系统。 [全文]

以及超声波换能器
换能器
  换能器是进行声能与其他形式的能量间转换的器件,通常与相关的振动、辐射、散射和类比电路组成转换系统,是决定整个系统性能的关键。 [全文]

和温度传感器
温度传感器
  温度压力传感器是由温度敏感元件和检测线路组成的。温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,来敏感被测物体温度的变化,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,从而达到测温的目的。   传统的热电偶、热电阻、热敏电阻及半导体温度传感器都是将温度值经过一定的接口电路转换后输出模拟电压或电流信号,利用这些电压或电流信号即可进行测量控制。而将模拟温度传感器与数字转换接口电路集成在一起,就成为具有数字输出能力的数字温度传感器。随着半导体技术的迅猛发展,半导体温度传感器与相应的转换电路、接口电路以及各种其它功能电路逐渐集成在一起,形成了功能强大、精确、价廉的数字温度传感器。 [全文]

外,外部仅需要2对RC阻容,2个晶振,和一些旁路去藕电阻电容。时间测量上游,下游信号的发射接收以及信号的处理,温度测量等完全在TDC-GP21芯片内部完成,单片机仅需读取TDC-GP21的测量数据,将时间测量结果以及温度测量结果进行热量的转换计算即可。

在单片机方面,MSP430不再是最好的选择,像Silicon Labs的单片机,Renesas的单片机系列等都可以完全适合热量表的应用。由于GP21的测量低功耗以及完全自动的超声波上下游测量,另外通过GP21的管脚可以提供给出一个超低功耗的32k晶振源,可以直接将这个晶振源提供给单片机。

1.3 TDC-GP21应用内部比较器测量效果

为了验证TDC-GP21的性能,我们应用acam GP21演示系统及威海天罡管段进行了零点稳定性测试,应用GP21内部比较器,每次测量3个脉冲,8次平均后的结果,2.5小时无停止,GP21测量功耗大概为14 uA:


  从上图可以看到,上游下游时差零点测量非常稳定,由于应用TDC-GP21内部斩波稳定比较器,时差结果几乎不随时间及温度漂移。

TDC-GP21应用内部自动上下游时间测量的典型流程:

Power on Reset, Reg0-Reg6 settings

Whileloop:

1. send Reg1 ALU计算(0x8121xxxx) ; 为了每一次计算都写入结果寄存器0 会有中断, 但是这个中断不需要关心

2.Init TDC 0x70 ; 初始化,上面的中断会自动恢复

3.send opcodestart_TOF_restart ; 发送自动上下游测量命令

4.wait INTN ; 判断是否收到中断

5.read 结果寄存器reg0 ; 从结果寄存器0中读上游时间测量结果

6.send reg1 ALU计算(0x8121xxxx) ; 下游测量将结果也写到结果寄存器0中,也会有中断,不用关心这个中断

7.Init TDC 0x70 ; 初始化,上面的中断会自动恢复

8. wait INTN ; 判断是否收到中断

9. read结果寄存器reg0 ; 从结果寄存器0中读下游时间测量结果

End Loop

2 总结

TDC-GP21这颗专门为超声波热量表测量所设计的高集成度芯片,将会使超声波热量表的设计进一步简化,降低整体成本,而其高质量的测量性能以及超低的测量功耗,必将成为继TDC-GP2之后成为超声波热量表设计的完美方案。由此,我们可以期待迎来新超声波热量表的时代。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top