微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于STC89C52的多通道脉搏采集系统设计

基于STC89C52的多通道脉搏采集系统设计

时间:08-24 来源:互联网 点击:

图3是AD620的简化示意图,AD620由三个放大器组成,其内部采用“三运算放大器”典型电路,仅需要一只外接电阻便可使增益在1~1 000之间任意调节,其调节是通过1脚和8脚间的阻抗Rg来实现的。AD620管脚图如图4所示。前置放大电路结构如图5所示。
3.2.2 带通滤波电路
带通滤波器是一个允许特定频段的波通过、同时屏蔽其他频段的设备。可以由低通滤波器和高通滤波器串联组合而成。
本系统的滤波电路采用双运放LM358。LM358是双运放集成电路,封装形式有塑封8引线双列直插式和贴片式,其管脚图如图6所示。它内部包括有两个独立的、高增益、内部频率补偿的双运算放大器。其主要特性:短路保护输出;真差动输入级;单电源工作:3.0~32 V;低输入偏置电流;具有内部补偿;共模范围扩展到负电源。带通滤波电路结构如图7所示。


 

3.2.3 二级放大电路
其目的是把信号放大到适合A/D转换的要求,从而使前置放大器的放大倍数不至于太高而产生波形的失真。因为前置放大后信号的大小为50 mV,因此后级放大倍数为100。二级放大电路结构如图8所示。

3.3 A/D转换器和单片机
本系统中采用美国TI公司生产的多通道、低价格的模数转换器TLC1543,这款芯片除了高速的A/D转换器和通用的控制能力外,内部还有14个A/D转换通道,其中11个通道可以作为外部输入的模拟电压,3个通道是芯片内部的自测电压。其采样一保持功能自动进行,管脚图如图9所示。

本系统选用STC89C52单片机,可重复烧写10万次。STC89C52完全兼容AT89C51,AT89C52等系列单片机。
3.4 压力控制模块
压力控制模块由充气泵、充气电磁阀、放气电磁阀组成,控制核心是单片机,用三极管作为控制开关,如图10所示,充气泵和充气电磁阀配合使用,对整个测量过程进行加压,减压时充气泵、充气电磁阀关闭,放气电磁阀打开使腕带压力减小。

3.5 电源
系统中AD620和LM358都需要±5 V供电,充气泵、电磁阀以及单片机需+5 V电源,为满足条件提出以下方案。
3.5.1 基于ICL7660的电源设计
ICL7660是Maxim公司生产的小功率极性反转电源转换器。利用该转换芯片可以方便的产生所需电压。其设计原理如图11所示。

3.5.2 LM2940电源模块
为了避免引入50 Hz工频信号对电路的干扰,因而选用干电池供电,干电池提供的电压为7.5 V。为了达到较好的供电质量,在电路中选择LM2940稳压芯片,将7.5 V左右的电压稳定到5 V。如图12所示。

经过实验和比较,方案二中的设计较第一种设计更为稳定、便携,故使用该设计方案。

4 脉搏信号的再现和处理
脉搏信号在上位机上的显示界面采用Visual Basic6.0创建,并利用其中的MSComm通信控件实现串行通信,所有的控制均通过人机交互界面直接操作,显示界面如图13所示。其中MSComm通信的函数说明如下:CommPort:设置或返回通信端口号;Settings:设置初始化参数,以字符串形式设定波特率、奇偶校验、数据位、停止位;PortOpen:设置或返回通信端口的状态,同时可打开和关闭端口;Input:用于从接收缓冲区返回并删除字符;Output:用于向发送缓冲区写数据或一个字符串。获得的测量数据在Matlab中进行处理和分析,仿真结果如图14所示。

5 结语
通过对传感器、放大电路、滤波电路、电源模块、A/D转换器等几个方面详细的介绍,完成了多通道脉搏信号采集系统的设计过程。经实验调试,采集到的信号清晰平稳,噪声基本滤除,整个系统具有一定的稳定性。提取到的信号通过Matlab软件最终可以实现复杂脉象的识别。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top