你必须知道的负载牵引的基础知识
负载牵引,百度百科的解释是酱紫滴:负载牵引方法可以通过不断调节输入和输出端的阻抗,找到让有源器件输出功率最大的输入、输出匹配阻抗。同理也可以得到让功率管效率最高的匹配阻抗。这种方法可以准确地测量出器件在大信号条件下的最优性能,反映出器件输入、输出阻抗随频率和输入功率变化的特性,为器件和电路的设计优化提供了坚实的基础。
晕?嘿嘿,估计是有点。来个白话版:由于通信制式越来越复杂,对放大器的线性度和效率要求越来越高。由于放大器的效率和线性度是个永恒的矛盾(射频君在前面的放大器科普中讲过,没看过的同学可以复习放大器历史文章系列),所以如何平衡这样的矛盾达到系统设计的最优就是一个需要解决的难题。如何解决?调节输入和输出端的阻抗也就是负载牵引 (Load-Pull)原理來改善增益压缩点,从而降低谐波的非线性失真,模拟功放的最大输出功率负载点,然后?然后传说中的高转换效率、高输出功率,高线性功放目标就在眼前了哈!
那神功究竟是如何炼成的呢?且听我们一步步详解。
RF功放在大信号工作时,最佳负载阻抗会随着输入信号功率的增加而跟着改变,所以我们必须在史密斯圆图上(Smith chart)上,针对不同的输入功率,每给定一个输入功率,画出在不同负载阻抗時的等输出功率曲线(Power contours),从而帮助我们找出最大输出功率时的最佳负载阻抗,这种方法称为负载牵引Load-Pull。
以典型的晶体管设计为例,首先大家会如何来做阻抗匹配?当然是借助传说中的ADS等仿真工具。
由于晶体管工作在接近饱和区和线性区交界时,它的AC Load Line会随着输入信号的增加而改变,尤其S21参数会随着输入信号的增加而变小,因此转换功率增益会因为晶体管工作在饱和区被压缩(传说中的功率压缩的概念由此得来)。因此,原来的晶体管在小信号状态下,输入/输出端都是设计在共轭匹配的。
增益最大化的情况下,如果一旦晶体管位于饱和区工作的时候,输出功率的最佳负载阻抗匹配点就会变动,所以晶体管就无法得到最大的功率输出。我们需要借助仿真软件,以Load-Pull的原理有规则地搜索史密斯图上的每个区域,找出功率放大器最大功率输出时的最佳外部负载阻抗ZL点。
这个模拟系统包括两个部分:分别是负载阻抗调节及阻抗匹配之参数提取:
1)负载阻抗调节:用极坐标表示法有规则地在史密斯图(Smith chart)上的每一点进行模拟,借由模拟不同的外部负载ZL所对应的输出功率结果,就可以得到放大器最大输出功率时负载阻抗在史密斯图上的位置,于是最佳负载发射系数点此ΓL就得到了。由ΓL的值可得知最佳外部阻抗ZL,並作输出阻抗匹配。
那么具体这个负载阻抗调节系统是如何组成的呢?
a)移相器
其功能在于模拟等Γ原图(Γe- j2θ)上之θ角调整(等同加上一段点长度為θ的传输线),如图二所示:
(b)变压器(Transformer):其功能在于模拟最佳负载阻抗点所对应Γ圆大小,必须搭配一个Parameter sweep模拟器來做n值的控制变化。
2)阻抗匹配之参数提取:如图三所示,位于功率器件的输出端和负载阻抗调节器中间,当负载阻抗调节器做任意改变时,可由此提取器读S-Parameter之值,并求得负载輸入端的反射系数。
图三、阻抗匹配的参数匹配器
仿真出来以后,还是理论值怎么办?这个时候我们强大的Loading Pulling 系统(当然核心是我们的阻抗调节器Tuner)就要出场了。
Load-Pull测试系统是验证功率放大器阻抗匹配最精准且最完整的测试平台,结构图如下图四所示。此测量平台包括:调节器Tuner System、信号SG、功率计Power Metter、矢网VNA、Bias System偏置系统等而组成,几乎兼具基础所有参数的测试功能,如DC-IV曲线、S-Parameter、Power、Noise、IMD、ACPR等。
我们就可以根据改变偏置电压以及调整Tuner对应的匹配阻抗,观察输出功率及效率的变化。上图中的电缆、连接器、阻抗调节器等组件,在系统测量前都必须将他们的S参数测出来,输入测量系统的软件中,从而修正误差。
上面图六中可以看出来,整个系统的插入损耗基本是0.7dB左右(考虑进电缆、连接器的影响,这个插入损耗是接近实际情况的)。
测量时通常先将输入端的Tuner固定在
- PXI和LabVIEW应对下一代负载牵引测量速度(08-27)
- 矢量有源谐波负载牵引测试技术简介(01-19)
- CDMA技术与3G系统中的功率控制问题(03-18)
- 双频功率放大器在CDMA和WCDMA设备上的应用(09-07)
- 利用RF功率检测器控制CDMA移动台和接入终端功率(08-16)
- 使用低功率射频系统 提高无线连接稳定性(03-26)