低功耗比较器应用
便携式电子设备大多采用3芯或4芯插孔,它可以作为立体声耳机插孔,带麦克风输入和压簧开关的单声道耳机插孔,也可以作为带有麦克风/压簧开关组合的立体声耳机插孔。利用MAX9060系列超小尺寸、微功耗比较器,通过不同的配置方式对外部附件进行检测,不仅把功耗控制在可以忽略的等级,还为产品提供了一种小巧、简单、具有极高性价比的检测方案。
目前,绝大多数电子设备(手机、PDA、笔记本电脑、手持式媒体播放器、游戏机等产品)通常需要连接外部附件。因此,这些设备需要专用的逻辑电路,用于自动检测附件的连接并识别其类型,从而使内部控制电路进行相应的调整。
增加电路实现自动检测/选择功能会提高系统功耗,这就带来了问题。作为设计人员,应该尽可能降低功耗,确保系统以最小的空间满足“绿色”环保的设计目标。为达到这一目的,超小尺寸、微功耗比较器,例如MAX9060系列,成为当前市场的最佳选择。这些比较器是帮助设计人员控制功耗的关键所在。
硬件电路检测插孔的连接
我们首先简单回顾自动检测插孔的基本原理。
以典型的耳机插孔电路(图1)为例。如图所示,在检测引脚连接一个上拉电阻,这样即可产生一个信号,表示耳机或其它外部装置是否插入插孔。典型连接中,如果有某个外部装置插入,检测引脚将断开。
没有附件插入插孔时,输出信号被拉高;有附件插入插孔时,信号被拉低。该检测信号连接到一个微控制器端口,它能够在扬声器(无耳机时)和耳机扬声器(有耳机时)之间自动切换音频信号。
在微控制器输入之前,可以通过一个简单的晶体管对检测信号进行缓冲。该晶体管还可提供必要的电平转换,以便与控制器连接。在手机、PDA等空间受限应用中,需要选择封装尺寸不大于几个毫米的晶体管。也可以利用低成本、低功耗的超小尺寸比较器提供缓冲和电平转换功能。例如MAX9060系列,采用1mm × 1mm晶片级封装,仅消耗1µA电流。
图1. 插孔自动检测电路
耳机检测
图1所示的音频插孔设计用于处理常见的3芯音频插头。该插头连接到立体声耳机或带有麦克风的单声道耳机。利用下述电路,可以轻松地区分出立体声和单声道+麦克风耳机。电路设计依据为:耳机电阻很低(通常为8Ω、16Ω或32Ω),而麦克风电阻很高(600Ω至10kΩ)。
这里简单介绍一下常见音频插孔和驻极体麦克风,有助于理解这些电路。在一个3芯音频插孔(图2)中,“插头”前端在立体声耳机承载左声道音频信号,在带麦克风的单声道耳机中承载麦克风信号。对于立体声耳机,“金属环”位置连接右声道信号,“套筒”接地;对于带麦克风的单声道耳机,“金属环”连接单声道麦克风的输入音频通道,“套筒”接地。
图2. 三芯音频插孔
驻极体麦克风
当压簧开关按下时,电压VDETECT (图5)下拉至地电位附近,微控制器判断为逻辑“0”;当压簧开关释放时,VDETECT可能超出CMOS输入的VIH电压规格。根据RMIC-BIAS (本例中为2.2kΩ)和耳机中麦克风类型的不同,VDETECT会在1.24V至2.78V之间变化。
所以,对于不同类型的微控制器,压簧开关无法直接与控制器连接。因此,图5采用了低功耗比较器。根据实际检测的麦克风类型设置基准电压,指示压簧开关的状态。当压簧开关按下时,比较器输出拉至高电平;释放开关时,拉至低电平。MAX9060系列比较器同样可以提供低功耗设计,用于压簧开关检测。
图6所示示波器截屏图是按下单声道耳机的压簧开关时获得的。设置与图5电路完全相同,只是采用了一个用于手机的2.5mm通用耳机进行测试。耳机插头带一个驻极体麦克风(带压簧开关),32Ω扬声器连接到“金属环”处。采用3V电源供电,通过2.2kΩ电阻提供偏置时,麦克风吸收212µA的固定偏置电流。
图6. 这些波形由带压簧开关的驻极体麦克风产生,受单声道耳机及其内部电路控制。当单声道耳机的压簧开关按下时,比较器检测到麦克风短路,从而将输出上拉到逻辑高电平。
检测到的VDETECT直流电压为2.52V (图6),MAX9063输出为低电平状态。按下压簧开关即将VDETECT接地,比较器输出通过一个外部10kΩ上拉电阻拉至高电平。由此可见,1mm × 1mm CSP封装的MAX9063比较器非常适合检测压簧开关和附件。MAX9028系列比较器同样适合此类应用。
结论
在便携应用中常常需要检测插孔、耳机和压簧开关。MAX9063、MAX9028系列专用比较器非常适合这类应用,这些器件所占用的空间非常小,所消耗的功率可以忽略不计。这些比较器为便
- 生产制造中的低功耗测试方法(02-27)
- 数字语音解码器的低功耗设计策略(08-23)
- 便携式低功耗雷达导航仪智能测控系统(08-22)
- 基于MSP430的低功耗流量计(10-29)
- 基于Atmega8低功耗智能微波探测器的设计(10-22)
- 热力驱动式无线蒸汽涡街流量计的设计(11-30)